A novel hierarchical and parallel model for wireless network simulations and its design using Ptolemy II infrastructure

Jens Voigt and Gerhard Fettweis

Mannesmann Mobilfunk Chair for Mobile Communications Systems
Dresden University of Technology
Germany

• Background and Problem Statement
• Approach
• Analysis
• Design
• Results and Conclusions

Background
Modeling a Radio Access Network

Reality --> Model

Physical time, real world actions --> Dynamic Analysis --> Dynamic Design (Simulation Engine)

Static Analysis --> Static Design (object oriented class library)

Done

Simulation Engine: Problems

- Stochastic, discrete, and dynamic simulations
- State of the art: discrete event simulations
 - Sequential (slow, but simple scheduling)
 - Parallel/Distributed (PDES)
 - Complicated synchronization algorithms
- Speed up in radio access network simulations depends on: partitioning vs. multiple access scheme
- Known partitioning strategies not usable with CDMA networks
Starting Point / Approach

- **known** Static Design
 - UML
 - A Meta Language (Tagged Signal Model)

- **unknown** Model of Computation
 - Mathematics
 - Dynamic Analysis

- **goal** Dynamic Design (Simulation Engine)
 - UML

Static Design: 3 Key Elements

- **Network Element Activation**
- **Transmission Channel**
- **Network Element**
Dynamic Analysis

Example: Global Interactions

- Time resolution: z
- Time slot or time frame of duration d

$$\text{Channel} \quad \text{Activation} \quad \text{Network Element}$$

- Channel: repeated interactions at: $h_{CA} = z \cdot d, N = \{z, 1 \leq z < n, z \in N\}$

$$E_{CA} = (E_{CA1} \uplus E_{CA2} \uplus E_{CA3} \uplus E_{CA4}), \forall z \in N$$

- Activation: random interactions at: $h_{AA} = \lambda_a, M = \{a, 1 \leq a < m, a \in N\}$

- Set of all interactions: $E_{\text{global}} = E_{CA} \uplus E_A$

- Set of all time stamps: $H_{\text{global}} = H_{CA} \uplus (H_A \setminus H_{CA})$
Dynamic Analysis: Results

synchronization = rendezvous

Dynamic Design: Theory
Dynamic Design on Ptolemy II

Interactions in Ptolemy II

- **novel domain for rendezvous interactions**
- **network element type partitioning**
- **sequential method calls**
- **rendezvous interactions**
- **global time**
- **discrete events**
- **local time**
Conclusions: PDES of CDMA Radio Access Networks

• **Synchronization algorithms**
 • mathematical analysis of interactions proves unordered interactions: *parallelism possible*
 • a-priori knowledge about interactions' course allows novel, tailored, and very simple „pessimistic“ synchronization using rendezvous interactions

• **Partitioning, especially for CDMA networks**
 • hierarchical design
 • partitioning strategy: types of network elements

• **Speed up vs. sequential**
 • on multi processor workstation about 1.2 ... 1.6