Ptolemy Project Status and Overview

Edward A. Lee
Professor
Ptolemy Project Director

Project Participants

Director:
• Edward A. Lee

Staff:
• Christopher Hylands
• Susan Gardner (Chess)
• Nuala Mansard
• Mary P. Stewart
• Neil E. Turker (Chess)
• Lea Turpin (Chess)

Postdocs, Etc.:
• Joern Jenneck, Postdoc
• Rowland R. Johnson, Visiting Scholar
• Kees Wissers, Visiting Industrial Fellow
• Daniel Lazaro Cuadrado, Visiting Scholar

Graduate Students:
• J. Adam Cataldo
• Chris Chang
• Elaine Cheang
• Sanjeev Kohli
• Xiaojun Liu
• Eleftherios D. Matsikoudis
• Stephen Neuendorffer
• James Yeh
• Yang Zhao
• Haiyang Zheng
• Rachel Zhou
Chess: Center for Hybrid and Embedded Software Systems

Seeded by a Major NSF/ITR project
(National Science Foundation/Information Technology Research)
Project: Foundations of Hybrid and Embedded Software Systems
A collaboration with Vanderbilt's ISIS Institute and U. of Memphis

Chess Board of Directors
- Tom Henzinger, tah@eecs.berkeley.edu
- Edward A. Lee, eal@eecs.berkeley.edu
- Alberto Sangiovanni-Vincentelli, alberto@eecs.berkeley.edu
- Shankar Sastry, sastry@eecs.berkeley.edu

Other key faculty
- Alex Aiken, aiken@eecs.berkeley.edu
- Dave Auslander, dma@me.berkeley.edu
- Ruzena Bajcsy, bajcsy@eecs.berkeley.edu
- Karl Hedrick, khedrick@me.berkeley.edu
- Kurt Keutzer, keutzer@eecs.berkeley.edu
- George Necula, necula@eecs.berkeley.edu
- Masayoshi Tomizuka, tomizuka@me.berkeley.edu
- Pravin Varaiya, varaiya@eecs.berkeley.edu

Software Legacy of the Project

- **Gabriel (1986-1991)**
 - Written in Lisp
 - Aimed at signal processing
 - Synchronous dataflow (SDF) block diagrams
 - Parallel schedulers
 - Code generators for DSPs
 - Hardware/software co-simulators
- **Ptolemy Classic (1990-1997)**
 - Written in C++
 - Multiple models of computation
 - Hierarchical heterogeneity
 - Dataflow variants: BDF, DDF, PN
 - C/VHDL/DSP code generators
 - Optimizing SDF schedulers
 - Higher-order components
- **Ptolemy II (1996-2022)**
 - Written in Java
 - Domain polymorphism
 - Multithreaded
 - Network integrated
 - Modal models
 - Sophisticated type system
 - CT, HDF, GI, GR, etc.

Each of these served us, first-and-foremost, as a laboratory for investigating design.

- **PtoPlot (1997-??)**
 - Java plotting package
- **Tycho (1996-1998)**
 - Itcl/Tk GUI framework
 - Java GUI framework

All open source.
All truly free software (cf. FSF).
Ptolemy Classic Example

Ptolemy application developed by Uwe Trautwein, Technical University of Ilmenau, Germany

Relating the problem level with the implementation level

Heterogeneous, problem-level description

Heterogeneous, implementation-level description
Foundations

Our contributions:
• Behavioral Types
• Domain Polymorphism
• Responsible Frameworks
• Hybrid Systems Semantics
• Dataflow Semantics
• Tagged Signal Model
• Starcharts and Modal Model Semantics
• Discrete-Event Semantics
• Continuous-Time Semantics

Giving structure to the notion of "models of computation"

Actor-Oriented Design
Actors with Ports and Attributes

Model of Computation:
• Messaging schema
• Flow of control
• Concurrency

Examples:
• Push/Pull
• Time triggered
• Process networks
• Discrete-event systems
• Dataflow systems
• Publish & subscribe

Key idea: The model of computation is part of the framework within which components are embedded rather than part of the components themselves.
Receiver Interface

These polymorphic methods implement the communication semantics of a domain in Ptolemy II. The receiver instance used in communication is supplied by the director, not by the component.

- get() : Token
- getContainer() : IOPort
- hasRoom() : boolean
- hasToken() : boolean
- put(t : Token)
- setContainer(port : IOPort)

Key to Domain Polymorphism: Receiver Object Model

- IOPort
- NoRoomException
- NoTokenException
- Receiver
- MailBox
- ProcessReceiver
- QueueReceiver
- DEReceiver
- SOPReceiver
- FIFOQueue
- ArrayFIFOQueue
- CTReceiver
- CSPReceiver
- PMReceiver

- get() : Token
- getContainer() : IOPort
- hasRoom() : boolean
- hasToken() : boolean
- put(t : Token)
- setContainer(port : IOPort)
Behavioral Types –
Codification of Domain Semantics

- Capture the dynamic interaction of components in *types*
- Obtain benefits analogous to data typing.
- Call the result *behavioral types.*

- Communication has
 - data types
 - behavioral types
- Components have
 - data type signatures
 - domain type signatures
- Components are
 - data polymorphic
 - domain polymorphic

Behavioral Type System

- We capture patterns of component interaction in a type system framework.
- We describe interaction types and component behavior using *interface automata.*
- We do type checking through *automata composition* (detect component incompatibilities)
- Subtyping order is given by the alternating simulation relation, supporting *domain polymorphism.*
Software

Our contributions:
• Visual notations
 - Modal models
 - Higher-order components
• Domains as sandboxes
• Actor-orientation
• Polymorphism in actor-oriented design
• Tool integration as a semantics problem
• Scheduling and code generation methods
• Influenced many commercial products
• Effective software engineering in a research context
• Configurable tool architectures

Providing architecture for "models of computation"
HyVisual - Hybrid System Modeling Tool
Based on Ptolemy II, Released Jan. 2003

HyVisual is a targeted tool, designed for hybrid system modeling.

Code Generation and Component Specialization

Giotto compiler

Giotto code → E code → Run time system

Java code → C code

Java code → Component
Much Else...

- Hybrid systems semantics
- CAL actor definition language
- Real-time semantics
- CI domain - push/pull
- Giotto and TM domains
- Interface definition/checking
- Units system
- Expression language semantics
- Modal models
- Meta models (IA domain)
- Image and video processing library
- Communications library
- ...

Community Involvement
Recent Third Party Software Contributions

- Many enhancements contributed by RIM:
 - Transition refinements
 - Higher-order components
 - Performance improvements
 - Expression language improvements
 - Matlab integration
 - Emacs integration
- Enhancements contributed by Agile Design
 - Undo/Redo
 - Port positioning
 - Icon customization
- Hardware synthesis capability from BYU
- Distributed optimization package from Spain
- Graduate class on MoCs at Virginia Tech
- Ice-cube project: paper on neutrino detection