Ptolemy Project Status and Overview
Edward A. Lee
Ptolemy Project Director, UC Berkeley

6th Biennial Ptolemy Miniconference
Berkeley, CA
May 12, 2005

Software Legacy of the Project
- Gabriel (1986-1991)
 - Written in Lisp
 - Aimed at signal processing
 - Synchronous dataflow (SDF) block diagrams
 - Parallel schedulers
 - Code generators for DSPs
 - Hardware/software co-simulators
- Ptolemy Classic (1990-1997)
 - Written in C++
 - Abstract Actor Semantics
 - Multiple models of computation
 - Hierarchical heterogeneity
 - Dataflow variants: BDF, DDF, PN
 - C/VHDL/DSP code generators
 - Optimizing SDF schedulers
 - Higher-order components
- Ptolemy II (1996-2022)
 - Written in Java
 - Behavioral polymorphism
 - Multithreaded
 - Network integrated and distributed
 - Modal models
 - Sophisticated type system
 - CT, HDF, CI, GR, etc.

Each of these served us, first-and-foremost, as a laboratory for investigating design.

Focus has always been on embedded software.
And Most Recently…

- Kepler (2003-?)
 - Scientific workflows
 - Web services harvester
 - Computational grid integration
 - Semantic types
 - Browser interface
 - Database integration
 - "R" integration
 - Sensor data streaming
 - XML and XSLT integration
 - …

Where it started: SDF: Synchronous Dataflow and the Balance Equations (1985-86)

\[\Gamma = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 2 & -1 \\ 2 & 0 & -1 \end{bmatrix} \]

\[q = \begin{bmatrix} q_1 \\ q_2 \\ q_3 \end{bmatrix} \]

\[\Gamma q = 0 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \]
Gabriel and Ptolemy Classic Leveraged SDF to Generate Parallel Code

SDF model, parallel schedule, and synthesized DSP assembly code (1990)

It is an interesting (and rich) research problem to minimize interlocks in complex multirate applications.

Many Scheduling and Optimization Problems (and Some Solutions) Resulted

- Optimization criteria that might be applied:
 - Minimize buffer sizes.
 - Minimize the number of actor activations.
 - Minimize the size of the representation of the schedule (code size).

An SDF model, a “Thor” model of a 2-DSP architecture, a “logic analyzer” trace of the execution of the architecture, and two DSP code debugger windows, one for each processor (1990).

Example: Application to ADPCM Speech Coding

Model of a speech coder generated to DSP assembly code and executed using a DSP debugger interface with host/DSP interaction (1993).
Example: Heterogeneous Architecture with DSP and Sun Sparc Workstation (1995)

DSP card in a Sun Sparc Workstation runs a portion of a Ptolemy model; the other portion runs on the Sun.

Ptolemy Classic Example Showing Higher-Order Components

(adaptive nulling in an antenna array, 1995)

Ptolemy application developed by Uwe Trautwein, Technical University of Ilmenau, Germany
Higher-Order Components Realizing Recursion in Ptolemy Classic

FFT implementation in Ptolemy Classic (1995) used a partial evaluation strategy on higher-order components.

Higher-Order Components in Ptolemy II

The dynamic dataflow (DDF) domain (new to Ptolemy II in v. 5.0) implements recursion in a similar way [due to Gang Zhou].
Higher-Order Expression Language in Ptolemy II

Higher-order components (actor-oriented) coupled with a higher-order expressions (functional) are a potentially powerful combination.

Higher-Order Components Coupled with Higher-Order Expressions

Neuendorffer and Zhao

What is the Ptolemy Project Really About?

Lee, Berkeley
The Ptolemy Project is About Actor-Oriented Design

Object orientation:

Actor orientation:

Actor-Oriented vs. Object-Oriented

The figure at the left shows the use of object-oriented web services for a “microarray data-analysis scenario for identifying targets in drug discovery.” The authors explain, “the numbered lines are the steps in the analysis path.”

The First (?) Actor-Oriented Platform

The On-Line Graphical Specification of Computer Procedures

W. R. Sutherland, Ph.D. Thesis, MIT, 1966

Bert Sutherland used the first acknowledged object-oriented framework (Sketchpad, created by his brother, Ivan Sutherland) to create the first actor-oriented programming framework.

Partially constructed actor-oriented model with a class definition (top) and instance (below).

Your Speaker in 1966
Modern Examples of Actor-Oriented Platforms

- Simulink (The MathWorks)
- LabVIEW (National Instruments)
- Modelica (Linkoping)
- OPNET (Opnet Technologies)
- Giotto and xGiotto (UC Berkeley)
- Polis & Metropolis (UC Berkeley)
- Gabriel, Ptolemy, and Ptolemy II (UC Berkeley)
- OCP, open control platform (Boeing)
- GME, actor-oriented meta-modeling (Vanderbilt)
- SPW, signal processing worksystem (Cadence)
- System studio (Synopsys)
- ROOM, real-time object-oriented modeling (Rational)
- Easy5 (Boeing)
- Port-based objects (U of Maryland)
- I/O automata (MIT)
- VHDL, Verilog, SystemC (Various)
- …

Ptolemy II: Our Laboratory for Actor-Oriented Models of Computation

- Concurrency management supporting dynamic model structure.
- Director from an extensible library defines component interaction semantics.
- Extensile, behaviorally-polymorphic component library.
- Type system for transported data.
- Visual editor supporting an abstract syntax.
Models of Computation
Implemented in Ptolemy II

- CI – Push/pull component interaction
- Click – Push/pull with method invocation
- CSP – concurrent threads with rendezvous
- CT – continuous-time modeling
- DDF – Dynamic dataflow
- DE – discrete-event systems
- DDE – distributed discrete events
- DPN – distributed process networks
- FSM – finite state machines
- DT – discrete time (cycle driven)
- Giotto – synchronous periodic
- GR – 2-D and 3-D graphics
- PN – process networks
- SDF – synchronous dataflow
- SR – synchronous/reactive
- TM – timed multitasking

Most of these are actor oriented.

Ptolemy II Extension Points

- Define actors
- Interface to foreign tools (e.g. Python, MATLAB)
- Interface to verification tools (e.g. Chic)
- Define actor definition languages
- Define directors (and models of computation)
- Define visual editors
- Define textual syntaxes and editors
- Packaged, branded configurations

“Domains” are extensions built on the core infrastructure.
What have we done recently?

Modeling and Design of Wireless Networked Systems

VisualSense: Modeling of wireless sensor networks as an extension of DE. [Baldwin, Kohli, Liu, Zhao]

VIPTOS: Design of software for wireless sensor network motes in TinyOS/nesC. [Cheong, coming soon]
Actor-Oriented Type Systems
Classes, Subclasses, and Inheritance

This type system builds on abstract syntax (not semantics) so it applies very broadly to actor-oriented models, including hybrid systems.

Semantics

Clean, clear, and rigorous semantics for discrete-event, continuous-time, and hybrid systems [Cataldo, Liu, Matsikoudis, Zheng]
Stochastic Hybrid Systems

Stochastic hybrid systems in Ptolemy II are Monte-Carlo models of nondeterminism.

Example of random "spontaneous transitions" by Lee and Zheng, based on suggestion by John Lygeros.

Other Key Results

- Reconfiguration analysis [Neuendorffer]
- Generalized dependency analysis [Neuendorffer, Zheng]
- The Cal actor language [Eker and Janneck]
- Java code generation [Neuendorffer]
- Modal model semantics [Liu, Zhou (Rachel)]
- Mixed procedural and event semantics [Cheong]
- Unbounded time, controlled precision [Zheng]
- Nondeterministic merge in PN [Lee, Xiaowen Xin (LLNL)]
- Giotto + Ptolemy II package [Brooks]
- Communications library [Zhou (Rachel)]
- Image and video library [Yeh]
- Scratchpad memory management from SDF [Kohli]
Acknowledgements

- **Current students**
 - Adam Cataldo
 - Elaine Cheong
 - Thomas Huining Feng
 - Xiaojun Liu
 - Eleftherios Matsikoudis
 - Yang Zhao
 - Haiyang Zheng
 - Gang Zhou
 - Rachel Zhou

- **Staff**
 - Christopher Brooks
 - Mary Margaret Sprinkle
 - Mary Stewart

- **Recent PhD graduates**
 - Steve Neuendorffer (Xilinx)
 - Yuhong Xiong (HP Labs)

- **Recent Postdocs**
 - Jörn Janneck (Xilinx)

- **Recent masters graduates**
 - Vinay Krishnan
 - Sanjeev Kohli
 - James Yeh

- **Current sponsors**
 - Agilent
 - Hewlett-Packard
 - Escher Institute
 - National Science Foundation
 - Toyota