
Please use these sheets for your answer. Add extra pages if necessary and staple them to these sheets. Write clearly and put a box around your answer, and show your work.

Print your name and SID below

Last Name ____________ First ____________ SID ____________

Problem 1:
Problem 2:
Problem 3:
Problem 4:
Problem 5:
Total:
1. 20 points

(a) Plot the Fourier Transform $X(\omega)$ of a signal $x \in \text{ContSignals}$ whose total energy is 2 and such that $X(\omega) = 0$ for $|\omega - 2\pi| > \pi$.

(b) Now find the time-domain signal x by taking the inverse FT of X.

2. **15 points** Fill in the blanks.

(a) The LT of \(x(t) = tu(t) \) is \[
\text{__________}
\] and its ROC is \[
\text{__________}
\].

(b) The LT of \(x(t) = e^{-t}u(t) \) is \[
\text{__________}
\] and its FT is \[
\text{__________}
\].

(c) The transfer function \(H(s) = \frac{s-1}{s+1} \) of an LTI system has a pole at \[
\text{__________}
\] and its impulse response is \(h(t) = \text{__________} \).
3. **20 points** Find the solution \(y(t), t \geq 0, \) of the differential equation

\[
\ddot{y}(t) - 3\dot{y}(t) + 2y(t) = 0,
\]

with initial condition \(y(0^-) = 1, \dot{y}(0^-) = 1. \) Check that your solution satisfies these initial conditions.
4. **20 points** In Figure 1 K is a real constant. Find the closed-loop transfer function $H(s)$. Use the Routh test to determine the values of K for which H is stable.
5. **25 points** In Figure 2 \(m_1 \) and \(m_2 \) are real signals with real Fourier Transforms \(M_1(f) \) and \(M_2(f) \) respectively. Suppose that \(M_i(f) = 0 \), for \(|f| > 15 \) kHz. The carrier frequency \(f_c = 100 \) kHz.

(a) Determine the Fourier Transform \(X(f) \) of the modulated signal \(x \). Write an expression for \(|X(f)| \). What is the bandwidth of \(x \)?

(b) Find a scheme to demodulate \(x \) and recover both signals \(m_1 \) and \(m_2 \). Prove that your scheme works.