EECS20n, Mock Midterm 2, 11/17/00

Please print your name and your TA’s name here:

Last Name _____________________ First _____________________ TA’s name _____________________

Problem 1:
Problem 2:
Problem 3:
Problem 4:
Problem 5:
Problem 6:
Problem 7:
Problem 8:
Total:

Read the questions carefully before you answer. Good luck.
1. **15 points** Write the following in Cartesian coordinates (i.e. in the form $x + jy$)

(a) $j^3 - j^2 + j - 1 =

(b) $\sum_{k=0}^{11} e^{jk\pi/6} =

(c) $(1 + j1)/(1 - j1) =

(d) $\sqrt{\cos \pi/4 + j \sin \pi/4} =

Write the following in polar coordinates (i.e. in the form $re^{j\theta}$)

(a) $1 + j1 =

(b) $(1 + j1)^3 =

(c) $[\cos \pi/4 + j \sin \pi/4]^{1/2} =

(d) $(1 + j1)/(1 - j1) =$
2. **15 points** Which of the following discrete-time or continuous-time signals is periodic. Answer yes or no. If the signal is periodic, give its fundamental period and state the units. Suppose that for a discrete-time signal, \( n \) denotes *seconds*, and for a continuous-time signal, \( t \) denotes *minutes*.

(a) \( \forall n \in \text{Ints}, \quad x(n) = e^{j\sqrt{2}n} \) Periodic (Y/N) Period =

(b) \( \forall t \in \text{Reals}, \quad x(t) = e^{j\sqrt{2}t} \) Periodic (Y/N) Period =

(c) \( \forall n \in \text{Ints}, \quad x(n) = \cos 3\pi n + \sin(3\pi n + \pi/7) \) Periodic (Y/N) Period =

(d) \( \forall t \in \text{Reals}, \quad x(t) = \cos 3t + |\sin 3t| \) Periodic (Y/N) Period =

(e) \( \forall n \in \text{Ints}, \quad x(n) = |\cos 3\pi n| + \sin(3\pi n + \pi/7) \) Periodic (Y/N) Period =

Find \( A, \theta, \omega \) in the following expression:

\[
A \cos(\omega t + \theta) = \cos(2\pi \times 10,000t + \frac{\pi}{4}) + \sin(2\pi \times 10,000t + \frac{\pi}{4}).
\]
3. **15 points** On Figure 1 plot the amplitude and phase response of the following frequency responses. On your plots carefully mark the values for $\omega = 0$ and for one other non-zero value of $\omega$.

(a) $\forall \omega \in \text{Reals}, \quad H_1(\omega) = 1 + j\omega$
(b) $\forall \omega \in \text{Reals}, \quad H_2(\omega) = \frac{1}{1+j\omega}$
(c) $\forall \omega \in \text{Reals}, \quad H_3(\omega) = 1 + \cos \omega$

Which of $H_1, H_2, H_3$ can be the frequency response of a discrete-time system?
4. **15 points** A discrete-time system $H$ has impulse response $h : \text{Ints} \to \text{Reals}$ given by

$$h(n) = \begin{cases} 
1, & n = -2, -1, 0, 1, 2 \\
0, & \text{otherwise}
\end{cases}$$

(a) Sketch $h$.

(b) What is the step response of $H$, i.e. the output signal when the input signal is $\text{step}$, where $\text{step}(n) = 1, n \geq 0$, and $\text{step}(n) = 0, n < 0$? You can give your answer as a plot or as an expression.

(c) What is the frequency response of $H$?

(d) What is the output signal of $H$ for the following input signals?

i. $\forall n, \ x(n) = \cos n$

ii. $\forall n, \ x(n) = \cos(n + \pi/6)$

iii. $\forall n, \ x(n) = \sin 100n$
5. **15 points**

(a) Find the frequency response for the LTI systems described by these differential equations (input is $x$, output is $y$)

i. $\dot{y}(t) - 0.5y(t) = x(t)$  
ii. $\ddot{y}(t) - 0.5\dot{y}(t) + 0.25y(t) = \dot{x}(t) + x(t)$

(b) What is the response of the second system above for the input $\forall t, x(t) = e^{(100t+\pi/4)}$?

(c) Find the frequency response for the LTI systems described by these difference equations (input is $x$, output is $y$)

i. $y(n) - 0.5y(n - 1) = x(n)$  
ii. $y(n) - y(n - 1) + 0.25y(n - 2) = x(n) + x(n - 1)$
6. 15 points  Figure 2 plots two continuous-time periodic signals $x$ and $y$ both with period 1 second, and two discrete-time signals $u$ and $v$ both with period 10 samples. The plots are given only for one period. Suppose the exponential Fourier Series representations of these signals are given as:

\[ x(t) = \sum_{k=-\infty}^{\infty} X_k e^{j\omega_xt} \]

\[ y(t) = \sum_{k=-\infty}^{\infty} Y_k e^{j\omega_yt} \]

\[ u(n) = \sum_{k=0}^{9} U_k e^{j\omega_un} \]

\[ v(n) = \sum_{k=0}^{9} V_k e^{j\omega.vn} \]

(a) Give the values of $\omega_x = \ldots$, $\omega_y = \ldots$, $\omega_u = \ldots$, $\omega_v = \ldots$. State the units of these frequencies.

(b) Calculate the values of the coefficients $X_0 = \ldots$, $Y_0 = \ldots$, $U_0 = \ldots$, $V_0 = \ldots$.

(c) Suppose the signals $x$ is measured in Volts. What is the unit of $X_0$?

(d) Calculate the values of the coefficients $X_1 = \ldots$, $Y_1 = \ldots$, $U_1 = \ldots$, $V_1 = \ldots$.

(e) Express $y$ as a delayed version of $x$ and $v$ as a delayed version of $u$.

(f) Express the FS coefficients $\{Y_k\}$ in terms of $\{X_k\}$ and $\{V_k\}$ in terms of $\{U_k\}$.
7. **15 points** Figure 3 shows two feedback systems. In these figures, $H_k(\omega), k = 1, 2, 3$ is the frequency response of the three LTI systems.

(a) Calculate the closed-loop frequency response $H(\omega)$ of the first feedback system in terms of the $H_k$. Hint: Use the fact that the two systems are the same.

(b) Suppose $H_k(\omega) = \frac{1}{1+j2\omega}$ for all $k = 1, 2, 3$. Calculate $H(0), H(1)$ and $\lim_{\omega \to \infty} H(\omega)$. 
8. **15 points** A continuous-time LTI system has the impulse response

\[ h(t) = \begin{cases} 
1, & |t| < 1 \\
0, & \text{otherwise}
\end{cases} \]

(a) Sketch the impulse response, and mark carefully the relevant points on your plot.

(b) Is this system causal? Answer yes or no.

(c) What is the step response of this system, i.e. the response to \(\text{step}(t) = 1, t \geq 0\) and \(= 0, t < 0\)?

(d) What is the ramp response of this system, i.e. the response to \(\text{ramp}(t) = t, t \geq 0\), and \(= 0, t < 0\)?

(e) What is the response of this system to the input signal \(\text{impulsetrain}\), where

\[ \forall t \in \text{Reals}, \quad \text{impulsetrain}(t) = \sum_{k=-\infty}^{\infty} \delta(t - 2k). \]