EECS20n, Quiz 3, 10/27/00

Last Name \qquad First \qquad Lab \qquad TA's name \qquad
Consider the following 7 discrete time systems with input and output signal space [Ints \rightarrow Reals] and 7 continuous time systems with input and output signal space [Reals \rightarrow Reals].

Discrete time systems $\forall x, \forall n \in$ Ints:
$\operatorname{Delay}(x)(n)=x(n-1)$
$\operatorname{SquaredDelay}(x)(n)=x^{2}(n-1)$
$\operatorname{Reverse}(x)(n)=x(-n)$
DiffEquation $(x)(n)=y(n)$ where $y(n)=y(n-2)+x(n-1)$
AddOne $(x)(n)=x(n)+1$
$($ AddOne $\circ \operatorname{Delay})(x)(n)=\operatorname{AddOne}(\operatorname{Delay}(x))(n)$
$($ AddOne + Delay $)(x)(n)=\operatorname{AddOne}(x)(n)+\operatorname{Delay}(x)(n)$
Continuous time systems $\forall x, \forall t \in$ Reals:
Delay $_{2.5}(x)(t)=x(t-2.5)$
AM $(x)(t)=\cos (2 \pi 20000 t) x(t)$
$F M(x)(t)=\cos (2 \pi(20000+x(t)) t)$
FastForward $(x)(t)=x(2 t)$
MovingAverage $(x)(t)=\frac{1}{10} \int_{s=t-10}^{t} x(s) d s$
$($ Delay \circ MovingAverage $)(x)(t)=($ Delay $($ MovingAverage $(x))(t)$
$($ Delay + MovingAverage $)(x)(t)=\operatorname{Delay}(x)(t)+\operatorname{MovingAverage~}(x)(t)$

Fill in the entries of the following table with Yes or No. A correct answer for each row yields 1 point, an incorrect answer yields 0 points.

System Name	Linear	Time-invariant
Delay		
SquaredDelay		
Reverse		
DiffEquation		
AddOne		
AddOne \circ Delay		
AddOne + Delay		
Delay		
AM		
FM		
FastForward		
MovingAverage		
Delay \circ MovingAverage		
Delay + MovingAverage		

