EECS 20. Final Exam Solution

December 20, 2001.

1. (a) True
(b) True
(c) True
(d) False
(e) False
2. (a) The solution is shown below:

(b) The solution is shown below:

(c) No, it is not well-formed. There is no fixed point.
3. (a) $y(n)-c_{1} y(n-1)-c_{2} y(n-2)=x(n-2)$.
(b) Let the state be given by (for example)

$$
s(n)=\left[\begin{array}{c}
y(n) \\
y(n+1)
\end{array}\right]
$$

Then

$$
A=\left[\begin{array}{ll}
0 & 1 \\
c_{2} & c_{1}
\end{array}\right], b=\left[\begin{array}{l}
0 \\
1
\end{array}\right], c^{T}=[1,0], d=0
$$

(c) To find the frequency response, let x be such that for all $n, x(n)=e^{j \omega n}$. Then the output y is such that $y(n)=H(\omega) e^{i \omega n}$. Plug this into the difference equation and solve for $H(\omega)$ to get

$$
H(\omega)=\frac{e^{-i 2 \omega}}{1-c_{1} e^{-i \omega}-c_{2} e^{-i 2 \omega}}
$$

4. (a) The first term has period 2 , and the second term has period $4 / 3$. The least common multiple is 4 , so the period of the sum is 4 . The fundamental frequency is therefore $f_{0}=1 / 4 \mathrm{~Hz}$ or $\omega_{0}=\pi / 2$ radians $/$ second.
(b) $A_{2}=1, A_{3}=1, \phi_{2}=-\pi / 2, \phi_{3}=0$. All the rest of $A_{k}=0, k \notin\{2,3\}$, and ϕ_{k} for these values of k can be anything.
(c) Write

$$
x(t)=\frac{1}{2 i} e^{i \pi t}-\frac{1}{2 i} e^{-i \pi t}+\frac{1}{2} e^{i 1.5 \pi t}+\frac{1}{2} e^{-i 1.5 \pi t},
$$

from which we can recognize that $X_{2}=1 / 2 i, X_{-2}=-1 / 2 i, X_{3}=1 / 2, X_{3}=1 / 2$, and $X_{k}=0, k \notin\{-3,-2,2,3\}$.
(d)

$$
\begin{aligned}
y(n) & =x(n)=\sin (\pi n)+\cos (1.5 \pi n)=\cos (1.5 \pi n) \\
& =\cos ((1.5 \pi-2 \pi) n)=\cos (-0.5 \pi n)=\cos (0.5 \pi n) .
\end{aligned}
$$

The period is $p=4$, so the fundamental frequency is $f_{0}=1 / 4$ cycles/sample, or $\omega_{0}=\pi / 2$ radians $/$ sample.
(e) Note that with $\omega_{0}=\pi / 2$,

$$
y(n)=\cos (0.5 \pi n)=\cos \left(\omega_{0} n\right) .
$$

Thus, $A_{1}=1, \phi_{1}=0$, and $A_{k}=0$ for all $k \neq 1$. Note that ϕ_{k} for all $k \neq 1$ can be anything.
(f) Note that

$$
y(n)=\frac{1}{2} e^{i \pi n / 2}+\frac{1}{2} e^{-i \pi n / 2},
$$

from which we can conclude that $Y_{1}=Y_{-1}=1 / 2$. However, we are asked for $Y_{0}, Y_{1}, Y_{2}, Y_{3}$. Since Y is periodic with period $p, Y_{-1}=Y_{3}$, so we conclude that

$$
Y_{0}=0, Y_{1}=1 / 2, Y_{2}=0, Y_{3}=1 / 2 .
$$

(g) $\quad \forall t \in$ Reals, $\quad w(t)=\cos (\pi t / 2)$.
(h) $f_{s}>3 / 2$ samples/second, or $\omega_{s}>3 \pi$ radians/second.
5. (a) Let the input be such that $x(t)=e^{i \omega t}$. Then

$$
\begin{aligned}
y(t) & =H(\omega) e^{i \omega t} \\
& =\int_{t-1}^{t+1} e^{i \omega s} d s \\
& =\frac{1}{i \omega} \int_{t-1}^{t+1} e^{i \omega s} i \omega d s \\
& =\frac{1}{i \omega}\left[e^{i \omega(t+1)}-e^{i \omega(t-1)}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{i \omega} e^{i \omega t}\left[e^{i \omega}-e^{-i \omega}\right] \\
& =\frac{1}{i \omega} e^{i \omega t}[2 i \sin (\omega)] \\
& =e^{i \omega t}\left[\frac{2 \sin (\omega)}{\omega}\right]
\end{aligned}
$$

Solving for $H(\omega)$ yields

$$
H(\omega)=\frac{2 \sin (\omega)}{\omega} .
$$

(b) Such input signals will have the form

$$
x(t)=A \cos (\omega t+\phi)
$$

for some $A \in$ Reals, $\phi \in$ Reals, and $\omega \in$ Reals such that

$$
H(\omega)=0 .
$$

Given the result of the previous part, $H(\omega)=0$ when $\omega=k \pi$ for any $k \in$ Integers, $k \neq 0$.
(c) Let $x(t)=\delta(t)$, so that

$$
y(t)=h(t)= \begin{cases}1 & -1 \leq t \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

