EECS 20. Midterm No. 1 Solution October 8, 2001.

1. 40 points. Please indicate whether the following statements are true or false. There will be no partial credit. They are either true or false. So please be sure of your answer.
(a) $[\{1,2,3\} \rightarrow\{a, b\}] \subset[$ Naturals $\rightarrow\{a, b\}]$

Solution: false
(b) $\{g \mid g=\operatorname{graph}(f) \wedge f: X \rightarrow Y\} \subset X \times Y$

Solution: false
(c) $F:[$ Reals \rightarrow Reals $] \rightarrow[$ Reals \rightarrow Reals $]$, such that $\forall t \in$ Reals, and $\forall x \in[$ Reals \rightarrow Reals],

$$
(F(x))(t)=\sin (2 \pi \cdot 440 t)
$$

is a memoryless system.
Solution: false
(d) Let $f:$ Reals \rightarrow Reals and g : Reals \rightarrow Reals, where g is obtained by delaying f by $\tau \in$ Reals. That is,

$$
\forall t \in \text { Reals }, \quad g(t)=f(t-\tau)
$$

Then $\operatorname{graph}(g) \subset \operatorname{graph}(f)$.
Solution: false
2. 30 points. Consider a state machine where

$$
\begin{aligned}
& \text { Inputs }=\{1, \text { absent }\} \\
& \text { Outputs }=\{0,1, \text { absent }\}, \\
& \text { States }=\{a, b, c, d, e, f\}, \\
& \text { initialState }=a
\end{aligned}
$$

and the update function is given by the following table (ignoring stuttering):

$($ currentState, inputSymbol $)$	$($ nextState, outputSymbol $)$
$(a, 1)$	$(b, 1)$
$(b, 1)$	$(c, 0)$
$(c, 1)$	$(d, 0)$
$(d, 1)$	$(e, 1)$
$(e, 1)$	$(f, 0)$
$(f, 1)$	$(a, 0)$

(a) Draw the state transition diagram for this machine.

Solution:

(b) Ignoring stuttering, give the Behaviors relation for this machine.

Solution:

$$
\text { Behaviors }=\{(x, y) \mid x=(1,1,1, \cdots) \wedge y=(1,0,0,1,0,0,1,0,0, \cdots)\} .
$$

(c) Find a state machine with three states that is bisimilar to this one. Draw that state machine, and give the bisimulation relation.

Solution:

The bisimulation relation is

$$
\{(a, a d),(b, b e),(c, c f),(d, a d),(e, b e),(f, c f)\}
$$

3. $\mathbf{3 0}$ points. Consider the following three state machines:

Machines A and B have input and output alphabets

$$
\text { Inputs }=\text { Outputs }=\{0,1, \text { absent }\} .
$$

Machine C has the same output alphabet, but input alphabet Input $_{C}=\{$ react, stutter $\}$.
(a) Which of these machines is deterministic?

Solution: A and C are deterministic.
(b) Draw the state transition diagram for the composition (machine C), showing only states that are reachable from the initial state.

Solution:

(c) Give the Behaviors ${ }_{C}$ relation for the composition of machine C , ignoring stuttering.

Solution:

$$
\text { Behaviors }_{C}=\{(a, b) \mid a=(\text { react, react }, \cdots) \wedge b=(1,0,1,0, \cdots)\}
$$

