EECS 20. Midterm No. 2 November 9, 2001.

Mama.

Please use these sheets for your answer and your work. Use the backs if necessary. Write clearly and put a box around your answer, and show your work.

Print your name and lab time below

Name.	
Lab time:	
D 11 1	
Problem 1:	
Problem 2:	
Problem 3:	
Problem 4:	
Total:	

1.	20 poi	ints.	Consider a	continuous-	time	signal	x: Reals	\rightarrow	Reals	defined	bv
••	-0 00		COMBIGOI G	Commissions	CITIE	SISIMI	w. Items	,	110000	GOIIIIGG	

$$\forall t \in Reals, \quad x(t) = \cos(\omega_1 t) + \cos(\omega_2 t),$$

where $\omega_1=2\pi$ and $\omega_2=3\pi$ radians/second.

(a) Find the smallest period $p \in Reals_+$, where p > 0.

(b) Give the fundamental frequency corresponding to the period in (a). Give the units.

(c) Give the coefficients A_0, A_1, A_2, \cdots and ϕ_1, ϕ_2, \cdots of the Fourier series expansion for x

- 2. **30 points.** Suppose that the continuous-time signal x: $Reals \to Reals$ is periodic with period p. Let the fundamental frequency be $\omega_0 = 2\pi/p$. Suppose that the Fourier series coefficients for this signal are known constants A_0, A_1, A_2, \cdots and ϕ_1, ϕ_2, \cdots . Give the Fourier series coefficients A'_0, A'_1, A'_2, \cdots and ϕ'_1, ϕ'_2, \cdots for each of the following signals:
 - (a) ax, where $a \in Reals$ is a constant

(b) $D_{\tau}(x)$, where $\tau \in Reals$ is a constant

(c) S(x), where S is an LTI system with frequency response H given by

$$\forall \, \omega \in \mathit{Reals}, \quad H(\omega) = \left\{ \begin{array}{ll} 1; & \text{if } \omega = 0 \\ 0; & \text{otherwise} \end{array} \right.$$

(Note that this is a highly unrealistic frequency response.)

Extra Credit:

(d) Let $y: Reals \to Reals$ be another periodic signal with period p. Suppose y has Fourier series coefficients $A_0'', A_1'', A_2'', \cdots$ and $\phi_1'', \phi_2'', \cdots$. Give the Fourier series coefficients of x+y.

3. **30 points.** Consider discrete-time systems with input *x*: *Integers* → *Reals* and output *y*: *Integers* → *Reals*. Each of the following defines such a system. For each, indicate whether it is linear (L), time-invariant (TI), both (LTI), or neither (N). Note that no partial credit will be given for these questions.

(a)
$$\forall n \in Integers$$
, $y(n) = x(n) + 0.9y(n-1)$

(b)
$$\forall n \in Integers$$
, $y(n) = \cos(2\pi n)x(n)$

(c)
$$\forall n \in Integers$$
, $y(n) = \cos(2\pi n/9)x(n)$

(d)
$$\forall n \in Integers$$
, $y(n) = \cos(2\pi n/9)(x(n) + x(n-1))$

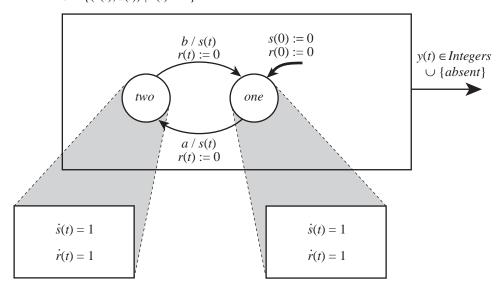
(e)
$$\forall n \in Integers$$
, $y(n) = x(n) + 0.1(x(n))^2$

(f)
$$\forall n \in Integers$$
, $y(n) = x(n) + 0.1(x(n-1))^2$

- 4. **20 points.** The objective of this problem is to understand a timed automaton, and then to modify it as specified.
 - (a) For the timed automaton shown below, describe the output y. You will lose points for imprecise or sloppy notation.

$$a = \{(r(t), s(t)) \mid r(t) = 1\}$$

$$b = \{(r(t), s(t)) \mid r(t) = 2\}$$



(b) Assume there is a new input $u: Reals \rightarrow Inputs$ with alphabet

$$Inputs = \{reset, absent\},\$$

and that when the input has value *reset*, the hybrid system starts over, behaving as if it were starting at time 0 again. Complete the diagram below so that it behaves like the system in (a) except that it responds to the *reset* input accordingly. Again, you will lose point for imprecise or sloppy notation. Make sure you actually complete the diagram, showing everything that needs to be shown.

