EECS 20. Midterm 2 Solution November 9, 2001.

1. 20 points. Consider a continuous-time signal $x:$ Reals \rightarrow Reals defined by
$\forall t \in$ Reals,$\quad x(t)=\cos \left(\omega_{1} t\right)+\cos \left(\omega_{2} t\right)$,
where $\omega_{1}=2 \pi$ and $\omega_{2}=3 \pi$ radians/second.
(a) Find the smallest period $p \in$ Reals $_{+}$, where $p>0$.

Solution: $p=2$.
(b) Give the fundamental frequency corresponding to the period in (a). Give the units.

Solution: $\omega_{0}=\pi$ radians/second.
(c) Give the coefficients $A_{0}, A_{1}, A_{2}, \cdots$ and $\phi_{1}, \phi_{2}, \cdots$ of the Fourier series expansion for x.
Solution: $A_{2}=A_{3}=1, A_{k}=0, \forall k \notin\{2,3\}$, and $\phi_{k}=0, \forall k \in$ Naturals.
2. 30 points. Suppose that the continuous-time signal $x:$ Reals \rightarrow Reals is periodic with period p. Let the fundamental frequency be $\omega_{0}=2 \pi / p$. Suppose that the Fourier series coefficients for this signal are known constants $A_{0}, A_{1}, A_{2}, \cdots$ and $\phi_{1}, \phi_{2}, \cdots$. Give the Fourier series coefficients $A_{0}^{\prime}, A_{1}^{\prime}, A_{2}^{\prime}, \cdots$ and $\phi_{1}^{\prime}, \phi_{2}^{\prime}, \cdots$ for each of the following signals:
(a) $a x$, where $a \in$ Reals is a constant;

Solution: $A_{k}^{\prime}=a A_{k}, \forall k \in$ Naturals $_{0}$ and $\phi_{k}^{\prime}=\phi_{k}, \forall k \in$ Naturals.
(b) $D_{\tau}(x)$, where $\tau \in$ Reals is a constant; and

Solution: $A_{k}^{\prime}=A_{k}, \forall k \in$ Naturals $_{0}$ and $\phi_{k}^{\prime}=\phi_{k}-k \omega_{0} \tau, \forall k \in$ Naturals.
(c) $S(x)$, where S is an LTI system with frequency response H given by

$$
\forall \omega \in \text { Reals, } \quad H(\omega)= \begin{cases}1 ; & \text { if } \omega=0 \\ 0 ; & \text { otherwise }\end{cases}
$$

(Note that this is a highly unrealistic frequency response.)
Solution: $A_{0}^{\prime}=A_{0}, A_{k}^{\prime}=0, \forall k \in$ Naturals and $\phi_{k}^{\prime}=0, \forall k \in$ Naturals. (Any other value for ϕ_{k}^{\prime} is acceptable.
Extra Credit:
(d) Let y :Reals \rightarrow Reals be another periodic signal with period p. Suppose y has Fourier series coefficients $A_{0}^{\prime \prime}, A_{1}^{\prime \prime}, A_{2}^{\prime \prime}, \cdots$ and $\phi_{1}^{\prime \prime}, \phi_{2}^{\prime \prime}, \cdots$. Give the Fourier series coefficients of $x+y$.
Solution:

$$
\forall k \in \text { Naturals }_{0}, \quad A_{k}^{\prime}=\left|A_{k} e^{i \phi_{k}}+A_{k}^{\prime \prime} e^{i \phi_{k}^{\prime \prime}}\right|,
$$

and

$$
\forall k \in \text { Naturals, } \quad \phi_{k}^{\prime}=\angle\left(A_{k} e^{i \phi_{k}}+A_{k}^{\prime \prime} e^{i \phi_{k}^{\prime \prime}}\right) .
$$

3. $\mathbf{3 0}$ points. Consider discrete-time systems with input x : Integers \rightarrow Reals and output y : Integers \rightarrow Reals. Each of the following defines such a system. For each, indicate whether it is linear (L), time-invariant (TI), both (LTI), or neither (N). Note that no partial credit will be given for these questions.
(a) $\forall n \in$ Integers, $\quad y(n)=x(n)+0.9 y(n-1)$

Solution: LTI
(b) $\forall n \in$ Integers, $\quad y(n)=\cos (2 \pi n) x(n)$

Solution: LTI
(c) $\forall n \in$ Integers, $\quad y(n)=\cos (2 \pi n / 9) x(n)$

Solution: L
(d) $\forall n \in$ Integers, $\quad y(n)=\cos (2 \pi n / 9)(x(n)+x(n-1))$

Solution: L
(e) $\forall n \in$ Integers, $\quad y(n)=x(n)+0.1(x(n))^{2}$

Solution: TI
(f) $\forall n \in$ Integers, $\quad y(n)=x(n)+0.1(x(n-1))^{2}$

Solution: TI
4. 20 points. The objective of this problem is to understand a timed automaton, and then to modify it as specified.
(a) For the timed automaton shown below, describe the output y. You will lose points for imprecise or sloppy notation.

$$
\begin{aligned}
a & =\{(r(t), s(t)) \mid r(t)=1\} \\
b & =\{(r(t), s(t)) \mid r(t)=2\}
\end{aligned}
$$

Solution: The system generates an event sequence

$$
(1,3,4,6,7,9,10, \cdots)
$$

at times

$$
1,3,4,6,7,9,10, \cdots
$$

That is, the value of each output event is equal to the time at which it is produced, and the intervals between events alternate between one and two seconds. Precisely,

$$
y(t)= \begin{cases}t & \text { if } t=3 k \text { for some } k \in \text { Naturals } \\ t & \text { if } t=3 k+1 \text { for some } k \in \text { Naturals } \\ \text { absent } & \text { otherwise }\end{cases}
$$

(b) Assume there is a new input u :Reals \rightarrow Inputs with alphabet

$$
\text { Inputs }=\{\text { reset }, \text { absent }\},
$$

and that when the input has value reset, the hybrid system starts over, behaving as if it were starting at time 0 again. Modify the diagram below so that it behaves like the system in (a) except that it responds to the reset input accordingly. Again, you will lose point for imprecise or sloppy notation.

$$
\begin{aligned}
a & =\{(r(t), s(t), u(t)) \mid r(t)=1 \wedge u(t)=\text { absent }\} \\
b & =\{(r(t), s(t), u(t)) \mid r(t)=2 \wedge u(t)=\text { absent }\} \\
c & =\{(r(t), s(t), u(t)) \mid u(t)=\operatorname{reset}\}
\end{aligned}
$$

