Consider the discrete-time signal \(x(n) = 1 + \cos(4\pi n / 9) \) where \(n \in \text{Integers} \).

1. Find the period \(p \), where \(p > 0 \).

 The period is \(p = 9 \), or any integer multiple of 9.

2. Give the fundamental frequency corresponding to the period in (1). Give the units.

 With \(p = 9 \), the fundamental frequency is \(f_0 = 1/9 \) cycles/sample, or \(\omega_0 = 2\pi/9 \) radians/sample.

3. Give the coefficients \(A_0, A_1, A_2, \ldots \) and \(\phi_1, \phi_2, \ldots \) of the Fourier series expansion for this signal.

 With \(p = 9 \) we get \(A_0 = A_2 = 1 \), while all other \(A_i \) are 0. \(\phi_2 = 0 \), and all other \(\phi_i \) are arbitrary.