EECS 20. Midterm No. 1

October 4, 2002.
Please use these sheets for your answer and your work. Use the backs if necessary. Write clearly and put a box around your answer, and show your work.

Print your name and lab day and time below

Name:
Lab time:

Problem 1:
Problem 2:
Problem 3:
Total:

1. $\mathbf{5 0}$ points. Please indicate whether the following statements are true or false. There will be no partial credit. They are either true or false. So please be sure of your answer.
(a) $\forall t \in$ Reals, $\quad(t, t+1) \in$ Reals 2
(b) $\exists x \in$ Integers, $\quad\{(x, x+1)\} \subset\{1,2,3\}^{2}$
(c) If $A=\{1,2\}$ and $B=\{1,2,3\}$, then $\exists x \in A$ such that $\forall y \in B, x<=y$.
(d) $P(A \cup B)=P(A) \cup P(B)$, where P denotes the power set.
(e) For any two functions $f: A \rightarrow A$ and $g: A \rightarrow A$, where A is a set, $f \circ g=g \circ f$.
(f) Let $f:$ Reals \rightarrow Reals be a function where $\forall x \in \operatorname{Reals,} f(x)=x \sin (x)$. Then f is onto.
(g) For the same function f in the previous part, f is one-to-one.
(h) Let $A=[-1,1]$. Consider a function f where $\forall x \in A, f(x)=x \sin (2 \pi x)$. Then $f \in[A \rightarrow A]$.
(i) $[\{1,2,3\} \rightarrow\{1,2\}] \subset[\{1,2,3\} \rightarrow$ Naturals $]$.
(j) $X \times Y \in\{g \mid g=\operatorname{graph}(f) \wedge f: X \rightarrow Y\}$.
(k) Given two state machines A and B, if A simulates B and A is deterministic, then B simulates A.
(1) Consider two state machines A and B with state spaces States $_{A}$ and States $_{B}$. If in each state machine, all states are reachable, then in the side-by-side composition, all states in States $_{A} \times$ States $_{B}$ are reachable.
2. 35 points. Consider the state transition diagram shown below.

Give each of the following:
(a) States $=$
(b) Inputs $=$
(c) Outputs =
(d) Give the domain and range, and fill in the table for update:

current state	(next state, output symbol) under specified input symbol		
	0	1	absent
a			
b			
c			

(e) initialState $=$
(f) Compose this state machine in a feedback loop, where its output is connected to its input. Assume the output of the composition is the output of this state machine. Give the set Behaviors for the feedback composition. You may ignore stuttering reactions, and give only the behaviors with no stuttering reactions.
3. $\mathbf{1 5}$ points. Consider the following two state machines:

These are similar to the machine CodeRecognizer studied in the text and in the homework. Determine whether A simulates B, B simulates A, neither, or both. Give the relevant simulation relations, if any.

Use this page for overflow

