EECS 20. Midterm No. 2 Solutions

November 8, 2002.

1. $\mathbf{4 0}$ points ($\mathbf{1 0}$ points each part). Consider the Simulink diagram shown below:

This shows an LTI system with one input and one output, both of which are continuous-time signals. The input and output are indicated by the rounded boxes, and are labeled x and y. The gain is 0.9 , and the integrators both have initial condition equal to 0 .
(a) Write a differential equation (with no integrals, just derivatives) that relates the input x and the output y.
Answer:

$$
\forall t \in \text { Reals }_{+}, \quad 0.9 x(t)=\ddot{y}(t)
$$

(b) Give the $[A, b, c, d]$ representation of this system.

Solution: Let the state be the outputs of the two integrators, as follows:

$$
\forall t \in \text { Reals }_{+}, \quad z(t)=\left[\begin{array}{l}
y(t) \\
\dot{y}(t)
\end{array}\right]
$$

Hence,

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \quad b=\left[\begin{array}{c}
0 \\
0.9
\end{array}\right] \quad c^{T}=\left[\begin{array}{ll}
1 & 0
\end{array}\right] \quad d=0
$$

(c) Find the frequency response $H:$ Reals \rightarrow Reals of this system.

Solution: Let the input be $x(t)=e^{i \omega t}$, in which case the output must be $H(\omega) e^{i \omega t}$. Substituting these into the differential equation from part (a), we get

$$
0.9 e^{i \omega t}=H(\omega)\left(-\omega^{2} e^{i \omega t}\right)
$$

which we can solve for $H(\omega)$ to get

$$
H(\omega)=-0.9 / \omega^{2}
$$

(d) Find the output of the system if the input x is given by

$$
\forall t \in \text { Reals }, \quad x(t)=\cos (2 t)
$$

Solution: Write this input as

$$
\forall t \in \text { Reals }, \quad x(t)=0.5\left(e^{i 2 t}+e^{-i 2 t}\right),
$$

which using linearity implies that the output must be

$$
\forall t \in \text { Reals }, \quad y(t)=0.5\left(H(2) e^{i 2 t}+H(-2) e^{-i 2 t}\right)=0.5\left((0.9 / 4) e^{i 2 t}+(0.9 / 4) e^{-i 2 t}\right)=0.2 \cos (2 t)
$$

2. 30 points ($\mathbf{5}$ points each part). Consider continuous-time systems with input $x:$ Reals \rightarrow Reals and output y : Reals \rightarrow Reals. Each of the following defines such a system. For each, indicate whether it is linear (L), time-invariant (TI), both (LTI), or neither (N). Note that no partial credit will be given for these questions.
(a) $\forall t \in$ Reals, $\quad \dot{y}(t)=x(t)+0.9 y(t)$ Answer: LTI
(b) $\forall t \in$ Reals, $\quad y(t)=\cos (2 \pi t) x(t)$ Answer: L
(c) $\forall t \in$ Reals, $\quad y(t)=x(t-1)$ Answer: LTI
(d) $\forall t \in$ Reals, $\quad y(t)=x(t)+0.1(x(t))^{2}$ Answer: TI
(e) $\forall t \in$ Reals, $\quad y(t)=x(t)+0.1(x(t-1))^{2}$ Answer: TI
(f) $\forall t \in$ Reals, $\quad y(t)=0$ Answer: LTI
3. $\mathbf{4 0}$ points ($\mathbf{1 0}$ points each part). Consider a discrete-time signal x : Integers \rightarrow Reals defined by

$$
\forall n \in \text { Integers }, \quad x(n)=1-\cos (3 \pi n / 4) .
$$

Assume this signal is sampled at 8,000 samples/second.
(a) Give the frequency of the cosine term in Hz (cycles/second).

Solution: The frequency is $3 \pi / 4$ radians/sample. Divide by 2π radians/cycle and multiply by 8000 samples/second to get 3000 Hz .
(b) Give period of x.

Solution: The period is the smallest positive integer p such that $3 \pi p / 4$ is a multiple of 2π. Thus, $p=8$.
(c) Give the fundamental frequency (in any units, but be sure to give the units).

Solution: $\omega_{0}=2 \pi / p=\pi / 4$ radians/sample. Alternatives: $1 / 8$ cycles/sample, or $8000 / 8$ cycles/second $=1000$ cycles/second.
(d) Give the coefficients $A_{0}, A_{1}, A_{2}, \cdots, A_{K}$ and $\phi_{1}, \phi_{2}, \cdots, \phi_{K}$ of the Fourier series expansion for x,

$$
x(n)=A_{0}+\sum_{k=1}^{K} A_{k} \cos \left(k \omega_{0} n+\phi_{k}\right)
$$

where

$$
K= \begin{cases}(p-1) / 2 & \text { if } p \text { is odd } \\ p / 2 & \text { if } p \text { is even }\end{cases}
$$

Solution: $A_{0}=1, A_{1}=0, A_{2}=0, A_{3}=1, A_{4}=0$, and $\phi_{1}=0, \phi_{2}=0, \phi_{3}=\pi$, $\phi_{4}=0$, although the phases corresponding to zero amplitude can be anything. The $\phi_{3}=\pi$ accounts for the minus sign in the definition of x.

