EECS20n, Quiz 2

Solution

1. Let $f:$ Reals $^{2} \rightarrow$ Reals 2 be a function where $\forall\left(x_{1}, x_{2}\right) \in$ Reals 2,

$$
f\left(x_{1}, x_{2}\right)=\left(y_{1}, y_{2}\right)
$$

where

$$
\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] .
$$

Please indicate whether the following statements are true or false. There will be no partial credit, so please consider your answer carefully.
(a) f is onto. false
(b) f is one-to-one false
(c) f is linear true
2. Consider a SISO system with

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \quad b=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad c=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad d=0 .
$$

Find the zero-state impulse response.

Solution:

$$
s(n+1)=\left[\begin{array}{l}
s_{1}(n+1) \\
s_{2}(n+1)
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
s_{1}(n) \\
s_{2}(n)
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] x(n)
$$

From this, we can determine that if the input is given by $\forall n \in$ Integers, $\quad x(n)=\delta(n)$, then

$$
s(0)=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad s(1)=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad s(2)=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad s(3)=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

and

$$
s(n)=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

for all $n \geq 3$. Using the output formula,

$$
y(n)=\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{l}
s_{1}(n) \\
s_{2}(n)
\end{array}\right]+0,
$$

we can determine that

$$
y(0)=0, \quad y(1)=1, \quad y(2)=0, \ldots
$$

and so

$$
y(n)=\delta(n-1) .
$$

