1. Consider a discrete-time signal \(x \) given by

\[
\forall \ n \in \text{Integers}, \quad x(n) = \sum_{k=-\infty}^{\infty} \delta(n - 2k),
\]

where \(\delta \) is the Kronecker delta function. Sketch this signal.

Solution:

![Sketch of the signal](image)

2. For the same signal as in the previous problem, find the Fourier series coefficients \(X_k \) in

\[
x(n) = \sum_{k=0}^{p-1} X_k e^{i\omega_0 kn}.
\]

Solution: Note that \(p = 2 \) so \(\omega_0 = \pi \). By inspection, therefore, \(X_0 = X_1 = 1/2 \).

3. Consider a discrete-time LTI system with frequency response \(H \) given by

\[
\forall \ \omega \in \text{Reals}, \quad H(\omega) = |\sin(\omega/2)|.
\]

Sketch this over one period.

Solution:

![Sketch of the frequency response](image)

4. Suppose the signal in problem 1 is the input to the system in problem 3. Find the output \(y \) and sketch it. ("Find" means give an expression for \(y(n) \) that is valid for all integers \(n \)).

Solution: Since we have the Fourier series for the input, we can just scale each term by the frequency response, as follows:

\[
\forall \ n \in \text{Integers}, \quad y(n) = \sum_{k=0}^{1} X_k H(k\omega_0) e^{i\omega_0 kn}.
\]

This becomes

\[
y(n) = (1/2)H(0) + (1/2)H(\pi)e^{i\pi n} = (1/2)(-1)^n.
\]

Here is a sketch: