
EECS 20. Final Exam Practice Problems, December 12, 2004.

There will be additional problems, as time permits.

1. Give a precise definition of the space Images of all 600× 900 grayscale images with pixel
values represented as 8-bit integers. Let BinN = {0,1}N be the space of all 0-1 sequences of
length N. Define a system

Coder : Images → BinN ,

such that (1) the function Coder is one-to-one and (2) N is as small as possible.

Answer to 1

Images = [V ×H → Bin8],

with V = {1, · · · ,600}, H = {1, · · · ,900}. Take N = 600×900×8. If the (i, j)th pixel value
of image ∈ Images is image(i, j) = (b1, · · · ,b8) ∈ Bin8, denote bk = image(i, j)(k).

Let

f : {1, · · · ,N}→V ×H ×{1, · · · ,8}

be any one-to-one (and onto) function. Define Coder : Images → BinN by

∀1 ≤ n ≤ N, Coder(image)(n) = image(i, j)(k),

in which f (n) = (i, j,k).

2. Find a function

f : [Ints → Reals2] → [Ints → Complex]

that is linear, one-to-one and onto. Prove that your choice of f has these properties.

Answer to 2 For x = (x1,x2) ∈ [Ints → Reals2], define

f (x)(n) = x1(n)+ ix2(n) ∈ Complex.

Check that f (ax+by) = a f (x)+b f (y) for a,b ∈ Reals, so f is linear. Next, note that if

f (x)(n) = x1(n)+ ix2(n) = f (y)(n) = y1(n)+ iy2(n),

then x(n) = y(n), so that f is one-to-one. Finally, for any z ∈ [Ints → Complex], z = f (x) for
x given by

x(n) = (Rez(n), Imz(n)),

so that f is onto.

3. What will the following Matlab code produce?
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>> k = 0:199;
>> x = (sin(k*2*pi/50 + pi/2) +1);
>> c = 128 * repmat(x, 200, 1);
>> image(c), axis image

Answer to 3 The code will produce a 200× 200 pixel image whose intensity varies sinu-
soidally in the vertical direction.

4. Design a state machine with Inputs = {0,1}, Outputs = {T,F} such that if S denotes the state
machine’s input-output function,

∀x,∀n, S(x)(n) =
{

T, if (number of 0’s) − (number of 1’s) in x0, · · · ,xn = 2
F, otherwise

Prove that there is no finite state machine that realizes S.

Answer to 4 Proof by contradiction. Assume that there is a machine with n(< ∞) states that
realizes the input-output function. Consider the input sequence 0n and the machine’s state
response

s(0),s(1), · · · ,s(n).

Since there are n states, there exist 0 ≤ i < j ≤ n with s(i) = s( j).

But then the outputs at the end of the two input sequences

0i+21i and 0 j+21i

must be the same, which contradicts the assumption.

5. Design a virtual cat as a state machine (i.e. specify its inputs, outputs, etc.) that behaves as
follows:

It starts out happy. If you pet it, it purrs. If you feed it, it throws up. If time passes,
it gets hungry and rubs against your legs. If you feed it when it is hungry, it
sometimes purrs and gets happy, and sometimes it stays hungry and rubs against
your legs. If you pet it when it is hungry, it bites you. If time passes when it is
hungry, it dies.

Is your machine deterministic or non-deterministic?

Answer to 5 The transition diagram of the state machine is given in figure 1, from which
one can read of the inputs, outputs, etc. The machine is non-deterministic. [Note: the else
self-loop is not shown.]

6. Determine if each of the following statements is true or false. Provide a proof or counter-
example to support your answer.

(a) If a deterministic state machine M is placed in feedback composition, the result is always
well-formed.
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happy hungry dead

{pet}/purr

{timepass}/rub {timepass}/

{feed}/purr

{feed}/throwup {feed}/rub

{pet}/bite

Figure 1: State machine for problem 5

(b) If a non-deterministic machine N simulates a deterministic machine M, then M simulates
N.

(c) If machine M has n states, then every state that is reachable from the initial state can be
reached by an input sequence of length at most n−1.

(d) If machines Mk has nk states, k = 1,2, the cascade composition of M1 and M2 has n1 +n2

states.

Answer to 6 (a) No. There is a 2-state machine counter-example in the text.

(b) No. Take any non-deterministic state machine N whose behaviors do not correspond to
a function. N cannot be simulated by any deterministic machine since the latter’s behaviors
form a graph of its input-output function.

(c) Yes.

(d) No. The cascade composition has n1 ×n2 states.

7. Consider the difference equation

y(n)− y(n−1) = x(n)−2x(n−1).

(a) Take the state at time n as s(n) = [y(n− 1),x(n − 1)]T and write down the [A,b,c,d]
representation of the system. Find its zero-state impulse response.

(b) Implement the difference equation using two delay elements whose outputs are the two
state components.

(c) Find another implementation using only one delay element. Write the [A,b,c,d] repre-
sentation for this implementation. Find its zero-state impulse response.

(d) Are the two impulse responses the same?

(e) Find the frequency response directly from the difference equation and by taking the
DTFT of the impulse response. Are the two frequency responses the same?

(f) Sketch the magnitude and phase response.
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Answer to 7 (a) From the update equations

s(n+1) =
[

y(n)
x(n)

]
=

[
1 −2
0 0

][
y(n−1)
x(n−1)

]
+

[
1
1

]
x(n),

y(n) = [1 −2]
[

y(n−1)
x(n−1)

]
+[1]x(n),

one can read off A,b,c,d. The frequency response can be read off from the difference equa-
tion,

H(ω) =
1−2e−iω

1− e−iω =
1

1− e−iω −2
e−iω

1− e−iω .

The impulse response h is the inverse DTFT of H which we can write down as

∀n, h(n) = u(n)−2u(n−1),

in which u is the step: u(n) = 0,n < 0,u(n) = 1,n ≥ 0. [Alternatively, one can find h from
A,b,c,d, as seen next.]

+ +
x(n) y(n)

y(n-1)x(n-1)
-2 1

+ y(n)

1

x(n)
+

-2s(n)

s(n+1)

Figure 2: Implementations for problem 7

(b, c, d) The two implementations are shown in figure 2. The second implementation yields

s(n+1) = s(n)+ x(n)
y(n) = s(n+1)−2s(n)

= −s(n)+ x(n),

so its zero-state impulse response is

h(n) =
{

d = 1, n = 0
cT An−1b = −1, n ≥ 1

= u(n)−2u(n−1)

as obtained before.

(e,f) We have seen H above, from which

H(ω) =
1−2cos(ω)+ i2sin(ω)
1− cos(ω)+ isin(ω)

|H(ω)| =
|1−2cos(ω)+ i2sin(ω)|
|1− cos(ω)+ isin(ω)|

∠H(ω) = tan−1 2sin(ω)
1−2cos(ω)

− tan−1 sin(ω)
1− cos(ω)

4



|H(ω)|

ω
π0

AngleH(ω)

ω
π0

π/2

3/2

Figure 3: Plots problem 7

Figure 3 gives the plots. Observe that for ω > 0 small,

H(ω) ≈ −1+ i2ω
iω

≈ i
ω

,

so as

ω → 0+, |H(ω)| → ∞ ∠H(ω) → π
2
.

For

ω = π, H(ω) =
3
2
.

8. Consider a LTI system with [A,b,c,d] representation given by:

A =
[

1 1
1 0

]
, b =

[
0
1

]
, cT = [1 1], d = 0.

(a) Suppose the initial state is s(0) = [0 0]T . Find an input sequence x(0),x(1) of length
two such that the state at time 2 is s(2) = [1 1]T .

(b) Suppose the initial state is s(0) = [s1 s2]T . Find an input sequence x(0),x(1) such that
the state at time 2 is s(2) = [0 0]T . (The input sequence will depend on s(0).)

Answer to 8 (a) We have

s(2) = A2s(0)+Abx(0)+bx(1)

=
[

2 1
1 1

]
s(0)+

[
1
0

]
x(0)+

[
0
1

]
x(1)

=
[

x(0)
x(1)

]
for s(0) = 0

So x(0) = s1(2) = 1,x(0) = s2(2) = 1.
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(b) From above,

s(2) =
[

2s1 + s2 + x(0)
s1 + s2 + x(1)

]
,

so x(0) = −2s1 − s2 and x(1) = −s1 − s2.

9. Two SISO systems with representations [Ai,bi,ci,di], i = 1,2 are connected in cascade com-
position. Find an [A,b,c,d] representation for the composiiton.

Answer to 9 Let the two systems be

si(n+1) = Aisi(n)+bixi(n)
yi(n) = cT

i si(n)+dixi(n).

Because of the cascade connection x2(n) = y1(n), so

s2(n+1) = A2s2(n)+b2x2(n) = A2s2(n)+b2[cT
1 s1(n)+d1x1(n)]

y2(n) = cT
2 s2(n)+d2x2(n) = cT

2 s2(n)+d2[cT
1 s1(n)+d1x1(n)].

So the representation for the composite system is[
s1(n+1)
s2(n+1)

]
=

[
A1 0

b2cT
1 A2

][
s1(n)
s2(n)

]
+

[
b1

b2d1

]
x1(n)

y2(n) =
[

d2cT
1 cT

2

][
s1(n)
s2(n)

]
+[d2d1]x1(n)

10. A discrete-time, causal LTI system S produces the output y given by

y(n) = δ(n)+ δ(n−1)+ δ(n−2),

in response to the input x given by

x(n) = δ(n)+ δ(n−2).

Find the impulse reponse h of S.

Answer to 10 Let h : Ints → Reals be the impulse response. Because S is causal, h(n) =
0,n < 0. The response to the input x(n) = δ(n)+ δ(n−2) is

y(n) = h(n)+h(n−2) = δ(n)+ δ(n−1)+ δ(n−2)

=
{

1, n = 0,1,2
0, n > 2

Evaulating, gives

h(0)+h(−2) = h(0) = 1

h(1)+h(−1) = h(1) = 1

h(2)+h(0) = h(2)+1 = 1 =⇒ h(2) = 0

h(3)+h(1) = h(3)+1 = 0 =⇒ h(3) = −1

h(4)+h(2) = h(4) = 0

h(5)+h(3) = h(5)−1 = 0 =⇒ h(5) = 1
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Continuing in this way one gets

(h(0),h(1),h(2), · · · ) = (1,1,0,−1,0,1,0,−1,0,1, · · · ).

11. A linear system with input x and output y is described by the second order differential equa-
tion,

ÿ(t)+3ẏ(t)+2y(t) = x(t). (1)

(a) Find the frequency response of this system. Give simple expressions for: ∀ω,

H(ω) =
|H(ω)| =
∠H(ω) =

(b) Find the partial fraction expansion of H , i.e. determine the constants a,b,A,B in the
formula

H(ω) =
1

(iω+a)(iω+b)
=

A
iω+a

+
B

iω+b
. (2)

Next find the (zero-state) impulse response of the system (1) by taking the inverse
Fourier Transform of H using (2).

(c) Now find the (zero-state) step response of the system (1).

Answer to 11 (a) We have

H(ω) =
1

−ω2 +2+ i3ω
; |H(ω)| = 1

[(2−ω2)2 +9ω2]1/2
; ∠H(ω) = − tan−1 3ω

2−ω2 .

(b) The partial fraction expansion is

H(ω) =
1

(iω+1)(iω+2)
=

1
iω+1

− 1
iω+2

,

whose inverset FT, using the tables, is

∀t ∈ Reals, h(t) = [e−t − e−2t ]u(t).

(c) The step response is the response to the step input u,

∀t, s(t) =
� ∞

−∞
h(s)u(t − s)ds =

� t

0
h(s)ds

=
� t

0
[e−s − e−2s]ds =

1
2
− e−t +

1
2

e−2t .

12. If x(n) = n,n = 0,1,2,3, find its 4-point DFT.
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13. Find the DTFT of the signal

∀n ∈ Ints,x(n) = (0.5)|n|

Answer to 13 The DTFT is:

∀ω, X(ω) =
∞

∑
−∞

x(n)e−iωn =
∞

∑
0

(0.5)ne−iωn +
1

∑
−∞

(0.5)−ne−iωn

=
∞

∑
0

(0.5e−iω)n +
∞

∑
0

(0.5eiω)n −1

=
1

1−0.5e−iω +
1

1−0.5eiω −1

=
2− cos(ω)

1.25− cos(ω)
−1 =

0.75
1.25− cos(ω)

14. Recall the inverse DTFT formula

∀n, x(n) =
1
2π

� 2π

0
X(ω)eiωndω.

(a) Use this formula to guess and verify the DTFT of the signal n �→ eiω0n, where 0 ≤ ω0 <
2π.

(b) What is the DTFT of the signal n �→ cos(ω0n) for 0 ≤ ω0 < 2π.

(c) What is the DTFT of the signal n �→ eiω0n for ω0 = 2π+ π/4. Note: ω0 > 2π.

Answer to 14 (a) Since
� 2π

0 δ(ω−ω0)eiωndω = eiω0n, we conclude that X(ω) = 2πδ(ω−ω0).

(b) By linearity

cos(ω0n) ↔ π[δ(ω−ω0)+ δ(ω+ ω0)].

(c) Since n �→ ei(2π+π/4)n = eiπ/4n, its DTFT is 2πδ(ω−π/4).

15. Recall that the Fourier Transform (FT) of x ∈ ContSignals is X ∈ ContSignals given by

∀ω, X(ω) =
� ∞

−∞
x(t)e−iωt dt. (3)

(a) Differentiate both sides of (3) with respect to ω n times and prove that the FT of the
signal t �→ tnx(t) is

ω �→ (i)nX (n)(ω) = (i)n dnX
dωn (ω).

(b) Find the FT of the signal e−tu(t).

(c) Find the FT of the signal tne−tu(t).
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Answer to 15 (a) Differentiation with respect to ω n times gives

X (n)(ω) =
� ∞

−∞
(−it)ne−iωt x(t)dt,

from which

inX (n)(ω) =
� ∞

∞
tnx(t)e−iωt dt,

so that indeed

tnx(t) ↔ inX (n)(ω).

(b) The FT is

X(ω) =
� ∞

−∞
e−tu(t)e−iωtdt =

� ∞

0
e−t e−iωtdt

=
1

1+ iω
.

(c) From calculus one can check that

dn

dωn [1+ iω]−1 = (−i)nn![1+ iω]−(n+1).

Hence

tne−tu(t) ↔ n!
(1+ iω)n .

16. The bandwidth of a continuous time signal x with FT X is by definition the smallest frequency
ωB such that X(ω) = 0 for |ω| > ωB.

(a) What is the bandwidth of the signals: ∀t ∈ Reals,

xk(t) = cos(10kπt),k = 1,2,3; x4(t) = x1(t)+ x2(t)+ x3(t).

(b) What is the FT of xk,k = 1, · · · ,4?

(c) Suppose xk is sampled at frequency ωs = 30π rad/sec. Find a simple expression for the
sampled signal yk.

(d) Find signals zk : Reals → Reals such that (i) the bandwidth of zk is smaller than 15π
rad/sec, which is one-half the sampling frequency; and (ii) if zk is sampled at frequency
ωs it also yields the signal yk.

Answer to 16 (a) The bandwidth of xk is 10kπ rad/sec, k = 1,2,3; the bandwidth of x4 is 30π
rad/sec.

(b) The FT are:

xk ↔ Xk(ω) = π[δ(ω−10kπ)+ δ(ω+10kπ)];k = 1,2,3

x4 ↔ X4 = X1 +X2 +X3.
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(c) We have

yk(n) = xk(n× 2
30

)

=

⎧⎪⎪⎨
⎪⎪⎩

cos(2
3πn), k = 1

cos(4
3πn) = cos(2

3πn), k = 2
cos(30

15πn) = 1, k = 3
2cos(2

3 πn)+1, k = 4

(d) The signals are

z1(t) = cos(10πt)
z2(t) = cos(10πt)
z3(t) = 1

z4(t) = 1+2cos(10πt)

17. A continuous signal xa(t) has the Fourier Transform

Xa(Ω) =
� ∞

−∞
xa(t)e− jΩtdt

such that Xa(Ω) = 0, |Ω| > 2π×1 rad/sec.

(a) Express the discrete time Fourier transform

Xb(ω) =
∞

∑
n=−∞

xb(n)e− jωn

in terms of Xa(Ω),where xb(n) = xa(n+0.25),∀n ∈ Intergers.

(b) Can the continuous time Fourier transform Xa(Ω) be uniquely determined from Xb(W )?
If yes, how; if not, why not?

(c) Now assume that in addition to xb(n), another set of samples xc(n) = xa(n) is obtained.
Can xa(t) be uniquely determined from xb(n) and xc(n)? If yes, how; if not, why not?

(d) What conclusions might you draw about sampling of bandlimited signals on the basis
of your results?

Answer to 17 (a)

Xb(ω) =
∞

∑
n=−∞

xb(n)e− jωn

=
∞

∑
n=−∞

1
2π

� ∞

−∞
Xa(Ω)e jΩ(n+0.25)dΩe− jωn

=
� ∞

−∞
Xa(Ω)e jΩ/4 1

2π

∞

∑
n=−∞

e− jn(ω−Ω)dΩ

=
� ∞

−∞
Xa(Ω)e jΩ/4

∞

∑
k=−∞

δ(ω−Ω+2πk)dΩ

=
∞

∑
k=−∞

Xa(ω+2πk)ej(ω+2πk)/4
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(b) Xa(Ω) can not be determined from Xb(ω) because xb(n) is undersampled.

(c)

Xc(ω) =
∞

∑
k=−∞

Xa(ω+2πk)

Xa(ω) can be obtained from xc(n) and xb(n).

Since Xa(ω) is bandlimited to [−2π,2π] rad/sec. For 0 ≤ ω < 2π,

Xc(ω) = Xa(ω)+Xa(ω−2π)

While

Xb(ω) = Xa(ω)e jω/4 +Xa(ω−2π)e jω/4e− jπ/2

Thus,
[

Xc(ω)
Xb(ω)

]
=

[
1 1

e jω/4 − je jω/4

][
Xa(ω)

Xa(ω−2π)

]

So we can obtain Xa(ω) by a matrix inverse

[
Xa(ω)

Xa(ω−2π))

]
=

[
1 1

e jω/4 − je jω/4

]−1 [
Xc(ω)
Xb(ω)

]

(d) The implication is that a bandlimited signal can be reconstructed perfectly as long as the
average sampling rate satisfies the Shannon-Nyquist Theorem.
However, if the samples are too closely spaced,
i.e. xb(n) = xa(n+1/N), then the matrix inverse becomes troublesome. The matrix

[
1 1

e jω/4 − je jω/4

]−1

is very difficult to compute for large N.

18. The autocorrelation sequence of a signal X(n) is defined as

Rx(n) =
∞

∑
k=−∞

x∗(k)x(n+ k)

Express the Fourier transform of Rx(n) in terms of X(ω), the Fourier transform of x(n).

Answer to 18 Using the change of variable: r = −k, we can rewrite Rx(n) as:

Rx(n) =
∞

∑
r=−∞

x∗(−r)x(n− r) = x∗(−n)∗ x(n)

By the symmetry property of DTFT : x∗(−n) ↔ X∗(ω), thus

Rx(ω) = X∗(ω)X(ω) = |X(ω)|2.
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