EECS 20. Final Exam. December 21, 2004. Use these sheets for your answer and your work. Use the backs if necessary. Write clearly and put a box around your answer, and show your work.

Print your name and lab day and time below

Name:
Lab day and time:

Problem 1:
Problem 2:
Problem 3:
Problem 4:
Problem 5:
Problem 6:
Total:

1. $\mathbf{1 5}$ points, $\mathbf{3}$ points each part Give precise definitions of the following:
(a) The space Images of all 600×900 images with pixel values in $\{0,1, \cdots, 255\}$.
(b) A one-to-one and onto function $f:[0, \infty) \rightarrow[0,1)$.
(c) A linear one-to-one function $f:$ Complex \rightarrow Reals ${ }^{2}$.
(d) The spaces ContSignals and DiscSignals of continuous-time and discrete-time complexvalued signals (use the [] notation):

Now define the system
Sampler $_{T}:$ ContSignals \rightarrow DiscSignals
which samples its input every T sec.
(e) The convolution $z=x * y$ when
i. $x, y:$ Reals \rightarrow Reals.
ii. $x, y:$ Ints \rightarrow Reals.
2. 15 points Design two state machines, both with Inputs $=\{0,1\}$, Outputs $=\{0,1,2\}$, and with input-output functions S_{1}, S_{2} given below.
(a) 7 points

$$
\forall x, \forall n \quad S_{1}(x)(n)=\left(n_{1}-n_{0}\right) \bmod 3,
$$

in which n_{1} and n_{0} are the numbers of 1 's and 0 's in $(x(0), \cdots, x(n))$, respectively.
(b) 8 points

$$
\forall x, \forall n \quad S_{2}(x)(n)= \begin{cases}0, & \text { if }\left(n_{1}-n_{0}\right) \text { is even } \\ 1, & \text { if }\left(n_{1}-n_{0}\right) \text { is odd }\end{cases}
$$

in which n_{1}, n_{0} are as above.
3. $\mathbf{1 5}$ points, $\mathbf{5}$ points each part Consider a LTI system with $[A, b, c, d]$ representation given by:

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad b=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad c^{T}=\left[\begin{array}{ll}
1 & 0
\end{array}\right], \quad d=0 .
$$

(a) Calculate the zero-input state response when the initial state is $s(0)=\left[\begin{array}{ll}s_{1}(0) & s_{2}(0)\end{array}\right]^{T}$.
(b) Calculate the (zero-state) impulse response, h.
(c) Calculate the response $y(n), n \geq 0$ when the initial state is $s(0)=\left[\begin{array}{ll}1 & 1\end{array}\right]^{T}$ and the input signal is $\forall n \geq 0, x(n)=\delta(n-1)$.
4. $\mathbf{2 0}$ points Consider the difference equation

$$
y(n)-2 y(n-1)=x(n)-3 x(n-1) .
$$

(a) 4 points Take the state at time n as $s(n)=[y(n-1), x(n-1)]^{T}$ and write down the $[A, b, c, d]$ representation of the system.
(b) $\mathbf{4}$ points Implement the difference equation using two delay elements whose outputs are the two state components.
(c) 6 points Find another implementation using only one delay element and find the $[A, b, c, d]$ representation for this implementation.
(d) 6 points Determine the zero-state impulse response.
5. 15 points The bandwidth of a continuous time signal x with FT X is by definition the smallest frequency ω_{B} such that $X(\omega)=0$ for $|\omega|>\omega_{B}$.
(a) 3 points What is the bandwidth of the signals: $\forall t \in$ Reals,

$$
x_{k}(t)=\sin (10 k \pi t), k=1,2,3 ; \quad x_{4}(t)=x_{1}(t)+x_{2}(t)+x_{3}(t)
$$

Specify the units of the bandwidth.
(b) $\mathbf{3}$ points What is the FT of $x_{k}, k=1, \cdots, 4$?
(c) 4 points Suppose x_{k} is sampled at frequency $\omega_{s}=30 \pi \mathrm{rad} / \mathrm{sec}$. Find a simple expression for the sampled signal y_{k}.
(d) 5 points Find signals $z_{k}:$ Reals \rightarrow Reals such that (i) the bandwidth of z_{k} is smaller than $15 \pi \mathrm{rad} / \mathrm{sec}$, which is one-half the sampling frequency; and (ii) if $\tilde{K}_{\mathcal{K}}$ is sampled at frequency ω_{s} it also yields the signal y_{k}.

Figure 1: Setup for problem 6
6. $\mathbf{2 0}$ points, $\mathbf{5}$ points each part Consider the setup of figure 1 . The filters H, G are as shown; the sampling period is T seconds.
(a) Express w, u in terms of y and W, U in terms of Y.
(b) Express Z in terms of X.
(c) Determine y and z for $T=0.1 s$ and $\forall t, x(t)=\sin (25 \pi t)+\sin (5 \pi t)$.
(d) Suppose in this setup H is changed to $\forall \omega, H(\omega)=1$. Take T, x as above, and determine z.

This page for overflow

