EECS 20. Final Exam Solution. December 21, 2004.

1. $\mathbf{1 5}$ points, $\mathbf{3}$ points each part Give precise definitions of the following:
(a) The space Images of all 600×900 images with pixel values in $\{0,1, \cdots, 255\}$.

Answer

$$
\text { Images }=[\{1, \cdots, 600\} \times\{1, \cdots, 900\} \rightarrow\{0, \cdots, 255\}] .
$$

(b) A one-to-one and onto function $f:[0, \infty) \rightarrow[0,1)$.

Answer The function f works:

$$
\forall x \in[0, \infty), \quad f(x)=1-e^{-x}
$$

(c) A linear one-to-one function $f:$ Complex \rightarrow Reals ${ }^{2}$.

Answer The function f works:

$$
\forall z \in \text { Complex }, \quad f(z)=(\operatorname{Re}(z), \operatorname{Im}(z)) .
$$

(d) The spaces ContSignals and DiscSignals of continuous-time and discrete-time complexvalued signals (use the [] notation):
Answer We have

$$
\begin{aligned}
\text { ContSignals } & =[\text { Reals } \rightarrow \text { Complex }] \\
\text { DiscSignals } & =[\text { Ints } \rightarrow \text { Complex }]
\end{aligned}
$$

Now define the system

$$
\text { Sampler }_{T}: \text { ContSignals } \rightarrow \text { DiscSignals }
$$

which samples its input every T sec.

Answer

$$
\forall x \in \text { ContSignals } \forall x \in \text { Ints, } \text { Sampler }_{T}(x)(n)=x(n T) .
$$

(e) The convolution $z=x * y$ when
i. $x, y:$ Reals \rightarrow Reals.

Answer

$$
\forall t \in \text { Reals, } z(t)=\int_{-\infty}^{\infty} x(s) y(t-s) d s
$$

ii. $x, y:$ Ints \rightarrow Reals.

Answer

$$
\forall n \in \text { Ints, } z(n)=\sum_{m=-\infty}^{\infty} x(n-m) y(m) .
$$

2. 15 points Design two state machines, both with Inputs $=\{0,1\}$, Outputs $=\{0,1,2\}$, and with input-output functions S_{1}, S_{2} given below.
(a) 7 points

$$
\forall x, \forall n \quad S_{1}(x)(n)=\left(n_{1}-n_{0}\right) \bmod 3,
$$

in which n_{1} and n_{0} are the numbers of 1 's and 0 's in $(x(0), \cdots, x(n))$, respectively.
Answer The state machine below works:

(b) 8 points

$$
\forall x, \forall n \quad S_{2}(x)(n)= \begin{cases}0, & \text { if }\left(n_{1}-n_{0}\right) \text { is even } \\ 1, & \text { if }\left(n_{1}-n_{0}\right) \text { is odd }\end{cases}
$$

in which n_{1}, n_{0} are as above.
Answer The state machine below works:

3. $\mathbf{1 5}$ points, $\mathbf{5}$ points each part Consider a LTI system with $[A, b, c, d]$ representation given by:

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad b=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad c^{T}=\left[\begin{array}{ll}
1 & 0
\end{array}\right], \quad d=0 .
$$

(a) Calculate the zero-input state response when the initial state is $s(0)=\left[\begin{array}{ll}s_{1}(0) & s_{2}(0)\end{array}\right]^{T}$. Answer The zero-input state response is $s(n)=A^{n} s(0), n \geq 0$. We have

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad A^{2}=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right], \cdots, A^{n}=\left[\begin{array}{ll}
1 & n \\
0 & 1
\end{array}\right]
$$

so

$$
s(n)=\left[\begin{array}{ll}
s_{1}(0)+n s_{2}(0) & s_{2}(0)
\end{array}\right]^{T} .
$$

(b) Calculate the (zero-state) impulse response, h.

Answer The impulse response h is given by:

$$
\begin{aligned}
h(n) & = \begin{cases}0, & n<0 \\
d=0, & n=0 \\
c^{T} A^{n-1} b=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{rr}
1 & n-1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=n-1, & n \geq 1\end{cases} \\
& = \begin{cases}0, & n \leq 0 \\
n-1, & n \geq 1\end{cases}
\end{aligned}
$$

(c) Calculate the response $y(n), n \geq 0$ when the initial state is $s(0)=\left[\begin{array}{ll}1 & 1\end{array}\right]^{T}$ and the input signal is $\forall n \geq 0, x(n)=\delta(n-1)$.
Answer The response is: $\forall n \geq 0$

$$
\begin{aligned}
y(n) & =c^{T} s(n)+h(n-1) \\
& =s_{1}(0)+n s_{2}(0)+h(n-1) \\
& = \begin{cases}1, & n=0 \\
2, & n=1 \\
2 n-1, & n \geq 2\end{cases}
\end{aligned}
$$

4. $\mathbf{2 0}$ points Consider the difference equation

$$
y(n)-2 y(n-1)=x(n)-3 x(n-1) .
$$

(a) 4 points Take the state at time n as $s(n)=[y(n-1), x(n-1)]^{T}$ and write down the $[A, b, c, d]$ representation of the system.
Answer We have

$$
\begin{aligned}
s(n+1) & =\left[\begin{array}{l}
y(n) \\
x(n)
\end{array}\right]=\left[\begin{array}{rr}
-2 & -3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
y(n-1) \\
x(n-1)
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right] x(n) \\
y(n) & =\left[\begin{array}{ll}
-2 & -3] s(n)+[1] x(n),
\end{array},=\right.\text {. }
\end{aligned}
$$

from which

$$
A=\left[\begin{array}{rr}
-2 & -3 \\
0 & 0
\end{array}\right], \quad b=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad c^{T}=\left[\begin{array}{ll}
-2 & -3
\end{array}\right], \quad d=1 .
$$

(b) $\mathbf{4}$ points Implement the difference equation using two delay elements whose outputs are the two state components.
Answer The implementation is drawn on the left:

(c) 6 points Find another implementation using only one delay element and find the $[A, b, c, d]$ representation for this implementation.
Answer The implementation is on the right. The representation is

$$
\begin{aligned}
s(n+1) & =2 s(n+1)+x(n) \\
y(n) & =-3 s(n)+s(n+1) \\
& =-s(n)+x(n)
\end{aligned}
$$

so,

$$
A=2, \quad b=1, \quad c=-1, \quad d=1
$$

(d) 6 points Determine the zero-state impulse response.

Answer We know that

$$
h(n)= \begin{cases}d=1, & n=0 \\ c A^{n-1} b=-2^{n-1}, & n \geq 1\end{cases}
$$

5. 15 points The bandwidth of a continuous time signal x with $\mathrm{FT} X$ is by definition the smallest frequency ω_{B} such that $X(\omega)=0$ for $|\omega|>\omega_{B}$.
(a) $\mathbf{3}$ points What is the bandwidth of the signals: $\forall t \in$ Reals,

$$
x_{k}(t)=\sin (10 k \pi t), k=1,2,3 ; \quad x_{4}(t)=x_{1}(t)+x_{2}(t)+x_{3}(t) .
$$

Specify the units of the bandwidth.
Answer The bandwidth of x_{k} is $10 k \pi \mathrm{rad} / \mathrm{sec}$, for $k=1,2,3$. The bandwidth of x_{4} is $30 k \pi \mathrm{rad} / \mathrm{sec}$.
(b) $\mathbf{3}$ points What is the FT of $x_{k}, k=1, \cdots, 4$?

Answer The FT is: $\forall \omega \in$ Reals

$$
\begin{aligned}
& X_{k}(\omega)=-i \pi[\delta(\omega-10 k \pi)-\delta(\omega+10 k \pi)], k=1,2,3 \\
& X_{4}(\omega)=-i \pi \sum_{k=1}^{3}[\delta(\omega-10 k \pi)-\delta(\omega+10 k \pi)]
\end{aligned}
$$

(c) 4 points Suppose x_{k} is sampled at frequency $\omega_{s}=30 \pi \mathrm{rad} / \mathrm{sec}$. Find a simple expression for the sampled signal y_{k}.
Answer The sampling time is $T=2 \pi / \omega_{s}=1 / 15 \mathrm{~s}$. So

$$
\begin{aligned}
\forall n \in \text { Ints, } \quad y_{k}(n) & =x_{k}(n T) \\
& =\sin \left(\frac{2}{3} k \pi n\right), k=1,2,3 .
\end{aligned}
$$

Since $\sin (4 / 3 \pi n)=-\sin (2 / 3 \pi n)$ and $\sin (6 / 3 \pi n)=0$,

$$
\forall n \in \text { Ints, } \quad \begin{aligned}
y_{1}(n) & =\sin \left(\frac{2}{3} k \pi n\right), \\
y_{2}(n) & =-\sin \left(\frac{2}{3} \pi n\right), \\
y_{3}(n) & =0, \\
y_{4}(n) & =y_{1}(n)+y_{2}(n)+y_{3}(n)=0
\end{aligned}
$$

(d) 5 points Find signals $z_{k}:$ Reals \rightarrow Reals such that (i) the bandwidth of z_{k} is smaller than $15 \pi \mathrm{rad} / \mathrm{sec}$, which is one-half the sampling frequency; and (ii) if \mathcal{F}_{*} is sampled at frequency ω_{s} it also yields the signal y_{k}.
Answer From part (c), we get:

$$
\begin{aligned}
\forall t \in \text { Reals, } & z_{1}(t) \\
& =\sin (10 \pi t) \\
z_{2}(t) & =-\sin (10 \pi t) \\
z_{3}(t)=z_{4}(t) & =0
\end{aligned}
$$

Figure 1: Setup for problem 6
6. $\mathbf{2 0}$ points, $\mathbf{5}$ points each part Consider the setup of figure 1 . The filters H, G are as shown; the sampling period is T seconds.
(a) Express w, u in terms of y and W, U in terms of Y. Answer We have

$$
\forall n, w(n)=y(n T) \text { and } \forall t, u(t)=\sum_{-\infty}^{\infty} y(n T) \delta(t-n T),
$$

and

$$
\forall \omega, W(\omega)=\frac{1}{T} \sum_{k=-\infty}^{\infty} Y\left(\frac{\omega-2 \pi k}{T}\right) \text { and } \forall \omega, U(\omega)=\frac{1}{T} \sum_{k=-\infty}^{\infty} Y\left(\omega-\frac{2 \pi k}{T}\right)
$$

(b) Express Z in terms of X.

Answer By Shannon-Nyquist theorem,

$$
\forall \omega, \quad Z(\omega)=Y(\omega)= \begin{cases}X(\omega), & |\omega| \leq \frac{\pi}{T} \\ 0, & |\omega|>\frac{\pi}{T}\end{cases}
$$

(c) Determine y and z for $T=0.1 s$ and $\forall t, x(t)=\sin (25 \pi t)+\sin (5 \pi t)$.

Answer The higher frequency term in x will be eliminated by H. So,

$$
\forall t, \quad y(t)=z(t)=\sin (5 \pi t)
$$

(d) Suppose in this setup H is changed to $\forall \omega, H(\omega)=1$. Take T, x as above, and determine z.
Answer The higher frequency term will be aliased by the sampling as $\sin (25 \pi t-$ $\left.2 \pi \omega_{s} t\right)=\sin (5 \pi t)$. Hence

$$
\forall t, \quad z(t)=2 \sin (5 \pi t) .
$$

This page for overflow

