EECS 20. Final Exam Solution. December 21, 2004.

- 1. **15 points, 3 points each part** Give precise definitions of the following:
 - (a) The space *Images* of all 600×900 images with pixel values in $\{0, 1, \dots, 255\}$.

Answer

Images =
$$[\{1, \dots, 600\} \times \{1, \dots, 900\} \rightarrow \{0, \dots, 255\}].$$

(b) A one-to-one and onto function $f:[0,\infty)\to[0,1)$.

Answer The function f works:

$$\forall x \in [0, \infty), \quad f(x) = 1 - e^{-x}.$$

(c) A linear one-to-one function $f: Complex \rightarrow Reals^2$.

Answer The function f works:

$$\forall z \in Complex, \quad f(z) = (Re(z), Im(z)).$$

(d) The spaces *ContSignals* and *DiscSignals* of continuous-time and discrete-time complex-valued signals (use the [] notation):

Answer We have

$$ContSignals = [Reals \rightarrow Complex]$$

$$DiscSignals = [Ints \rightarrow Complex]$$

Now define the system

$$Sampler_T: ContSignals \rightarrow DiscSignals$$

which samples its input every T sec.

Answer

$$\forall x \in ContSignals \forall x \in Ints, Sampler_T(x)(n) = x(nT).$$

- (e) The convolution z = x * y when
 - i. $x, y : Reals \rightarrow Reals$.

Answer

$$\forall t \in \textit{Reals}, z(t) = \int_{-\infty}^{\infty} x(s)y(t-s)ds.$$

ii. $x, y : Ints \rightarrow Reals$.

Answer

$$\forall n \in Ints, z(n) = \sum_{m=-\infty}^{\infty} x(n-m)y(m).$$

- 2. **15 points** Design two state machines, both with $Inputs = \{0, 1\}$, $Outputs = \{0, 1, 2\}$, and with input-output functions S_1, S_2 given below.
 - (a) 7 points

$$\forall x, \forall n \quad S_1(x)(n) = (n_1 - n_0) \bmod 3,$$

in which n_1 and n_0 are the numbers of 1's and 0's in $(x(0), \dots, x(n))$, respectively. **Answer** The state machine below works:

(b) 8 points

$$\forall x, \forall n \quad S_2(x)(n) = \left\{ \begin{array}{ll} 0, & \text{if } (n_1 - n_0) \text{ is even} \\ 1, & \text{if } (n_1 - n_0) \text{ is odd} \end{array} \right.$$

in which n_1, n_0 are as above.

Answer The state machine below works:

3. **15 points, 5 points each part** Consider a LTI system with [A, b, c, d] representation given by:

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad c^T = \begin{bmatrix} 1 & 0 \end{bmatrix}, \quad d = 0.$$

(a) Calculate the zero-input state response when the initial state is $s(0) = [s_1(0) \quad s_2(0)]^T$. **Answer** The zero-input state response is $s(n) = A^n s(0), n \ge 0$. We have

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \quad A^2 = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, \quad \cdots, A^n = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix},$$

SO

$$s(n) = [s_1(0) + ns_2(0) \quad s_2(0)]^T.$$

(b) Calculate the (zero-state) impulse response, h.

Answer The impulse response h is given by:

$$h(n) = \begin{cases} 0, & n < 0 \\ d = 0, & n = 0 \end{cases}$$

$$c^{T} A^{n-1} b = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & n-1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = n-1, & n \ge 1.$$

$$= \begin{cases} 0, & n \le 0 \\ n-1, & n \ge 1 \end{cases}$$

(c) Calculate the response $y(n), n \ge 0$ when the initial state is $s(0) = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$ and the input signal is $\forall n \ge 0, x(n) = \delta(n-1)$.

Answer The response is: $\forall n \geq 0$

$$y(n) = c^{T} s(n) + h(n-1)$$

$$= s_{1}(0) + n s_{2}(0) + h(n-1)$$

$$= \begin{cases} 1, & n = 0 \\ 2, & n = 1 \\ 2n - 1, & n \ge 2 \end{cases}$$

4. 20 points Consider the difference equation

$$y(n) - 2y(n-1) = x(n) - 3x(n-1).$$

(a) **4 points** Take the state at time n as $s(n) = [y(n-1), x(n-1)]^T$ and write down the [A, b, c, d] representation of the system.

Answer We have

$$s(n+1) = \begin{bmatrix} y(n) \\ x(n) \end{bmatrix} = \begin{bmatrix} -2 & -3 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} y(n-1) \\ x(n-1) \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} x(n)$$
$$y(n) = \begin{bmatrix} -2 & -3 \end{bmatrix} s(n) + \begin{bmatrix} 1 \end{bmatrix} x(n),$$

from which

$$A = \begin{bmatrix} -2 & -3 \\ 0 & 0 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad c^T = \begin{bmatrix} -2 & -3 \end{bmatrix}, \quad d = 1.$$

(b) **4 points** Implement the difference equation using two delay elements whose outputs are the two state components.

Answer The implementation is drawn on the left:

4

(c) **6 points** Find another implementation using only *one* delay element and find the [A, b, c, d] representation for this implementation.

Answer The implementation is on the right. The representation is

$$s(n+1) = 2s(n+1) + x(n)$$

 $y(n) = -3s(n) + s(n+1)$
 $= -s(n) + x(n)$

so,

$$A = 2, \quad b = 1, \quad c = -1, \quad d = 1$$

(d) **6 points** Determine the zero-state impulse response.

Answer We know that

$$h(n) = \begin{cases} d = 1, & n = 0\\ cA^{n-1}b = -2^{n-1}, & n \ge 1 \end{cases}$$

- 5. **15 points** The bandwidth of a continuous time signal x with FT X is by definition the smallest frequency ω_B such that $X(\omega) = 0$ for $|\omega| > \omega_B$.
 - (a) **3 points** What is the bandwidth of the signals: $\forall t \in Reals$,

$$x_k(t) = \sin(10k\pi t), k = 1, 2, 3;$$
 $x_4(t) = x_1(t) + x_2(t) + x_3(t).$

Specify the units of the bandwidth.

Answer The bandwidth of x_k is $10k\pi$ rad/sec, for k=1,2,3. The bandwidth of x_4 is $30k\pi$ rad/sec.

(b) **3 points** What is the FT of $x_k, k = 1, \dots, 4$?

Answer The FT is: $\forall \omega \in Reals$

$$X_k(\omega) = -i\pi [\delta(\omega - 10k\pi) - \delta(\omega + 10k\pi)], k = 1, 2, 3$$

 $X_4(\omega) = -i\pi \sum_{k=1}^{3} [\delta(\omega - 10k\pi) - \delta(\omega + 10k\pi)]$

(c) **4 points** Suppose x_k is sampled at frequency $\omega_s = 30\pi$ rad/sec. Find a simple expression for the sampled signal y_k .

Answer The sampling time is $T=2\pi/\omega_s=1/15$ s. So

$$\begin{array}{lcl} \forall n \in \mathit{Ints}, & y_k(n) & = & x_k(nT) \\ & = & \sin(\frac{2}{3}k\pi n), k = 1, 2, 3. \end{array}$$

Since $\sin(4/3\pi n) = -\sin(2/3\pi n)$ and $\sin(6/3\pi n) = 0$,

$$\forall n \in Ints, \quad y_1(n) = \sin(\frac{2}{3}k\pi n),$$

$$y_2(n) = -\sin(\frac{2}{3}\pi n),$$

$$y_3(n) = 0,$$

$$y_4(n) = y_1(n) + y_2(n) + y_3(n) = 0$$

(d) **5 points** Find signals $z_k : Reals \rightarrow Reals$ such that (i) the bandwidth of z_k is smaller than 15π rad/sec, which is one-half the sampling frequency; and (ii) if z_k is sampled at frequency ω_s it also yields the signal y_k .

Answer From part (c), we get:

$$\forall t \in Reals, \quad z_1(t) = \sin(10\pi t)$$
$$z_2(t) = -\sin(10\pi t)$$
$$z_3(t) = z_4(t) = 0$$

Figure 1: Setup for problem 6

- 6. **20 points, 5 points each part** Consider the setup of figure 1. The filters H, G are as shown; the sampling period is T seconds.
 - (a) Express w, u in terms of y and W, U in terms of Y. Answer We have

$$\forall n, w(n) = y(nT) \text{ and } \forall t, u(t) = \sum_{-\infty}^{\infty} y(nT)\delta(t - nT),$$

and

$$\forall \omega, W(\omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} Y(\frac{\omega - 2\pi k}{T}) \text{ and } \forall \omega, U(\omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} Y(\omega - \frac{2\pi k}{T})$$

(b) Express Z in terms of X.

Answer By Shannon-Nyquist theorem,

$$\forall \omega, \quad Z(\omega) = Y(\omega) = \begin{cases} X(\omega), & |\omega| \le \frac{\pi}{T} \\ 0, & |\omega| > \frac{\pi}{T} \end{cases}$$

(c) Determine y and z for T=0.1s and $\forall t, x(t)=\sin(25\pi t)+\sin(5\pi t)$.

Answer The higher frequency term in x will be eliminated by H. So,

$$\forall t, \quad y(t) = z(t) = \sin(5\pi t).$$

(d) Suppose in this setup H is changed to $\forall \omega, H(\omega) = 1$. Take T, x as above, and determine z.

Answer The higher frequency term will be aliased by the sampling as $\sin(25\pi t - 2\pi\omega_s t) = \sin(5\pi t)$. Hence

$$\forall t, \quad z(t) = 2\sin(5\pi t).$$

This page for overflow