EECS 20. Midterm No. 2, Solution November 19, 2004.

1. $\mathbf{2 0}$ points A system is described by the difference equation

$$
\begin{equation*}
y(n)=x(n)+x(n-1)+0.5 y(n-1) . \tag{1}
\end{equation*}
$$

(a) $\mathbf{7}$ points Obtain the $\left[A, b, c^{T}, d\right]$ representation of this system by:
i. choosing the state,
ii. calculating A, b, c^{T}, d for your choice of state.
(b) $\mathbf{8}$ points If $x(-1)=0, y(-1)=1$, calculate the zero-input (i.e. $x(n)=0, n \geq 0$) state response.
Calculate the frequency response H of this system. What are the magnitude and phase of H at $\omega=0, \pi$?

Answer to 1 (a) (i) Take the state as $s(n)=[x(n-1), y(n-1)]^{T}$.
(ii) Writing $s(n+1)=A s(n)+b x(n)$ in expanded form gives

$$
\begin{aligned}
s(n+1) & =\left[\begin{array}{l}
x(n) \\
y(n)
\end{array}\right]=\left[\begin{array}{c}
x(n) \\
x(n)+x(n-1)+0.5 y(n-1)
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 & 0 \\
1 & 0.5
\end{array}\right]\left[\begin{array}{l}
x(n-1) \\
y(n-1)
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right] x(n),
\end{aligned}
$$

from which

$$
A=\left[\begin{array}{ll}
0 & 0 \tag{2}\\
1 & 0.5
\end{array}\right], \quad b=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

and, since

$$
y=\left[\begin{array}{ll}
1 & 0.5
\end{array}\right]\left[\begin{array}{l}
x(n-1) \\
y(n-1)
\end{array}\right]+x(n),
$$

so $c^{T}=\left[\begin{array}{ll}1 & 0.5\end{array}\right], d=1$.
(b) The zero-input state response is $s(n)=A^{n} s(0), n \geq 0$. So we need to calculate A^{n}, with A given in (2). By induction,

$$
A^{n}=\left[\begin{array}{cc}
0 & 0 \\
(0.5)^{n-1} & (0.5)^{n}
\end{array}\right]
$$

and since $s(0)=\left[\begin{array}{ll}0 & 1\end{array}\right]^{T}, s(n)=\left[\begin{array}{ll}0 & (0.5)^{n}\end{array}\right]^{T}$.
(c) To obtain the frequency response, substitute $x(n)=e^{j \omega n}, y(n)=H(\omega) e^{i \omega n}$ in (1) and simplify to get

$$
\forall \omega, \quad H(\omega)=\frac{1+e^{-i \omega}}{1-0.5 e^{-i \omega}} .
$$

$H(0)=4, H(\pi)=0, \angle H(0)=\angle H(\pi)=0$.

Figure 1: Hybrid system for problem 2

2. 10 points

Consider the hybrid system of fig 1 .
(a) $\mathbf{5}$ points For $0 \leq n \leq 400$, write down an expression for $s(n)$ and then sketch the output $y(n)$. Carefully mark the times when y reaches its maximum and minimum values.
(b) $\mathbf{5}$ points Does y become periodic after some finite time? If yes, what is the period?

Answer to 2 (a) The expression for s is

$$
s(n)= \begin{cases}0.1 n, & 0 \leq n \leq 100 \\ 10-0.1(n-100), & 100 \leq n \leq 190 \\ 1+0.1(n-190), & 190 \leq n \leq 280 \\ 10-0.1(n-280), & 280 \leq n \leq 370 \\ 1+0.1(n-370), & 370 \leq n \leq 400\end{cases}
$$

The plot of $y(n)=s(n)$ is shown.
(b) Yes, after $n=100, y$ is periodic and its period is 180 samples.
3. 20 points, 5 points each part For each of the following discrete-time systems S, state whether it is time-invariant (TI), linear (L), causal (C) and memoryless (ML). For each system prove your answer for the property indicated in bold.
(a) $\forall x, n, \quad S(x)(n)=x(n-1)+x(n)$. Causal.
(b) $\forall x, n, \quad S(x)(n)=x(2 n)$. Time-invariant.
(c) $\forall x, n, \quad S(x)(n)=[x(n-1)]^{2}$. Memoryless.
(d) $\forall x, n, \quad S(x)(n)=2 n x(n-1)$. Linear.

Answer to 3

(a) System is TI, L, C and not ML.

Causal Suppose x, u are inputs with outputs y, v respectively. Suppose $x(m)=u(m), m \leq$ n. Then $y(n)=x(n-1)+x(n)=u(n-1)+u(n)=v(n)$. So $S(x)(n)=S(u)(n)$.
(b) System is not TI, L, not causal, not ML.
not TI We have

$$
\begin{aligned}
S \circ D_{T}(x)(n) & =D_{T}(x)(2 n)=x(2 n-T) \\
D_{T} \circ S(x)(n) & =S(x)(n-T)=x(2(n-T))
\end{aligned}
$$

So it is enough to choose x, n, T with $x(2 n-T) \neq x(2(n-T))$.
(c) System is TI, not L, causal, not ML.
not ML Suppose, by contradiction, that S is memoryless. So

$$
\begin{equation*}
\exists f: R \rightarrow R, \forall x, \forall n, S(x)(n)=[x(n-1)]^{2}=f(x(n)) \tag{3}
\end{equation*}
$$

In particular, taking $n=0$ and $x(0)=0$, we have for all values $x(-1),[x(-1)]^{2}=f(0)$. But this is impossible.
(d) S is not TI, L, C, not ML.

Linear Suppose $S(x)=y, S(u)=v$. Then

$$
S(a x+b u)(n)=2 n(a x+b u)(n-1)=a 2 n x(n-1)+b 2 n u(n-1)=a S(x)(n)+b S(u)(n)
$$

so S is linear.
4. $\mathbf{1 5}$ points, $\mathbf{5}$ points each part A continuous-time LTI system has frequency response

$$
\forall \omega, H(\omega)=[1+i \omega]^{-1} .
$$

(a) Plot its magnitude and phase response. Mark the values for $\omega=0,1$
(b) The frequency response of another LTI system is

$$
\forall \omega, G(\omega)=[H(\omega)]^{2} .
$$

Plot its magnitude and phase response. Mark the values for $\omega=0,1$
(c) The signal $\forall t, x(t)=\cos (t)+\cos (10 t)+\cos (100 t)$ is input to G. Calculate the output, making the approximation $1+i \omega \approx i \omega$ for $|\omega|>9$.

Answer to 4

(a) We have

$$
|H(\omega)|=\frac{1}{\left[1+\omega^{2}\right]^{1 / 2}}, \quad \angle H(\omega)=-\tan ^{-1}(\omega)
$$

so $|H(0)|=1, \angle H(0)=0 ;|H(1)|=1 / \sqrt{2}, \angle H(1)=-\pi / 4$.
(b) We have

$$
|G(\omega)|=|H(\omega)|^{2}=\frac{1}{1+\omega^{2}} ; \angle G(\omega)=2 \angle H(\omega)=-2 \tan ^{-1}(\omega),
$$

so $|G(0)|=1, \angle G(0)=0 ;|G(1)|=1 / 2, \angle G(1)=-\pi / 2$.
(c) The output y is $\forall t$,

$$
\begin{aligned}
y(t) & =|G(1)| \cos (t+\angle G(1))+|G(10)| \cos (10 t+\angle G(10))+|G(100)| \cos (100 t+\angle G(100) \\
& =\frac{1}{2} \cos \left(t+\frac{\pi}{2}\right)+\frac{1}{100} \cos (10 t+\pi)+\frac{1}{10000} \cos (100 t+\pi) .
\end{aligned}
$$

The responses are plotted in the figure.

Figure 2: System for problem 5

Figure 3: Solution to 5 (a)
5. 15 points You are given three kinds of building blocks for discrete-time systems: one-unit delay; gains; and adders.
(a) $\mathbf{5}$ points Use these building blocks to implement the system:

$$
y(n)=0.5 y(n-2)+x(n)+x(n-1) .
$$

(b) $\mathbf{1 0}$ points For the system of figure 2 obtain its $\left[A, b, c^{T}, d\right]$ representation taking the two-dimenstional state at time n to be $s(n)=\left[s_{1}(n), s_{2}(n)\right]^{T}$, the output of the two delays.

Answer to 5 (a) The system is given in figure 3.
(b) We have

$$
\begin{aligned}
{\left[\begin{array}{l}
s_{1}(n+1) \\
s_{2}(n+1)
\end{array}\right] } & =\left[\begin{array}{rr}
0.5 & 0.7 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
s_{1}(n) \\
s_{2}(n)
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] x(n) \\
y(n) & =\left[\begin{array}{ll}
0.7 & 1.7
\end{array}\right]\left[\begin{array}{l}
s_{1}(n) \\
s_{2}(n)
\end{array}\right]+[1] x(n)
\end{aligned}
$$

Figure 4: Feedback system for problem 6

Figure 5: Frequency response for problem 6
6. 20 points In the negative feedback system of figure 4 assume that $H(\omega)=[1+i \omega]^{-1}$. Let G_{K} be the closed-loop frequency response. For $K=1,10,100$
(a) 10 points Determine $G_{K}(\omega),\left|G_{K}(\omega)\right|, \angle G_{K}(\omega)$. Draw two plots: one for all the magnitude responses $\left|G_{K}(\omega)\right|$, and another for all the phase responses $\angle G_{K}(\omega)$.
(b) 5 points Determine ω_{K} at which $\angle G_{K}\left(\omega_{K}\right)=-\pi / 4$.
(c) $\mathbf{5}$ points Determine the response y_{K} of G_{K} to the input signal $\forall t, x_{K}(t)=\cos \left(\omega_{K} t\right)$

Answer to 6 The closed loop frequency response is

$$
\forall \omega, \quad G(\omega)=\frac{K H(\omega)}{1+K H(\omega)}=\frac{K}{(K+1)+i \omega} .
$$

(a) So

$$
|G(\omega)|=\frac{K}{\left[(K+1)^{2}+\omega^{2}\right]^{1 / 2}}, \quad \angle G(\omega)=-\tan ^{-1} \frac{\omega}{K+1} .
$$

See figure 5
(b) If $\omega_{K}=K+1, \angle G_{K}\left(\omega_{K}\right)=-\tan ^{-1}=-\pi / 4$.
(c) For all t,

$$
y_{K}(t)=\frac{K}{\sqrt{2}(K+1)} \cos \left(\omega_{K} t-\frac{\pi}{4}\right)
$$

