1. When the inputs to a time-invariant system are: \(\forall n, \)
\[
\begin{align*}
x_1(n) &= 2\delta(n - 2) \\
x_2(n) &= \delta(n + 1)
\end{align*}
\]
where \(\delta \) is the Kronecker delta

the corresponding outputs are
\[
\begin{align*}
y_1(n) &= \delta(n - 2) + 2\delta(n - 3) \\
y_2(n) &= 2\delta(n + 1) + \delta(n)
\end{align*}
\]
respectively.

Is this system is linear? Give a proof or a counter-example.

2. Consider discrete-time systems with input and output signals \(x, y \in [\text{Integers} \rightarrow \text{Reals}] \).
Each of the following relations defines such a system. For each, indicate whether it is linear(L), time-invariant (TI), both(LTI), or neither (N). Give a proof or counter-example.

(a) \(y(n) = g(n)x(n) \)
(b) \(y(n) = e^{x(n)} \)

3. (a) An LTI system with input signal \(x \) and output signal \(y \) is described by the differential equation
\[
\ddot{y}(t) + 2\dot{y}(t) + 0.5y(t) = x(t).
\]
Suppose the input signal is \(\forall t, x(t) = e^{i\omega t} \), where \(\omega \) is fixed. What is its output signal \(y \)?

(b) Another LTI system is subject to the differential equation
\[
\ddot{y}(t) + y(t) = \dot{x}(t) + x(t)
\]
i. What is the frequency response?
ii. What is the magnitude and phase of the frequency response for \(\omega = 0.5 \)?

4. For this problem, assume discrete time everywhere. Given two LTI systems \(S \) and \(T \) suppose signal \(f \) is input into \(S \) and \(g \) into \(T \). The input and output signals are displayed in figure 1. Are the two systems identical, that is, \(S = T \)?

5. A system is described by the difference equation
\[
y(n) = x(n) + bx(n - 1) + ay(n - 1),
\]
wherein \(a, b \) are constants.

(a) Obtain the \([A, b, c^T, d]\) representation of this system by:

i. choosing the state,
ii. calculating \(A, b, c^T, d \) for your choice of state.
(b) If \(x(n - 1) = 0, y(n - 1) = 1 \), calculate the zero-input (i.e. \(x(n) = 0, n \geq 0 \)) state response.

(c) Calculate the frequency response of this system.

6. For the linear difference equation
 \[
 y(n) = 0.5y(n - 1) + x(n),
 \]

(a) Taking the state at time \(n \) to be \(s(n) = y(n - 1) \), write down the zero-input response, the zero-state impulse response \(h : Ints \rightarrow Reals \), the zero-state response, and the (full) response.

(b) Show that the zero-input response \(y_{zi} \) is a linear function of the initial state, i.e. it is of the form
 \[
 \forall n \geq 0, \quad y_{zi}(n) = a(n)s(0),
 \]
 for some constant coefficients \(a(n) \). Then show that
 \[
 \lim_{n \to \infty} y_{zi}(n) = 0
 \]

(c) Suppose \(s_0 \) is the initial state and the input is a unit step, i.e. \(x(n) = 1, n \geq 0; = 0, n < 0 \). Determine the response \(y(n), n \geq 0 \), and calculate the steady state response
 \[
 y_{ss} = \lim_{n \to \infty} y(n).
 \]

(d) Plot the input, output and the steady state value in the previous part.

(e) Calculate the frequency response \(H : Reals \rightarrow Complex \) and plot the magnitude and phase response.
(f) Suppose \(x(n) = 1, -\infty < n < \infty \). What is the output \(y(n), -\infty < n < \infty \) and compare it with \(y_{fs} \).

7. Suppose \(x \) is a continuous-time periodic signal, with period \(p \) and exponential FS representation,

\[
\forall t, \quad x(t) = \sum_{k=-\infty}^{\infty} X_k \exp(ik\omega_0 t),
\]

in which \(\omega_0 = 2\pi / p \).

(a) Write down the formula for \(X_k \) in terms of \(x \).

(b) Consider the signal \(y \),

\[
\forall t, \quad y(t) = x(\alpha t),
\]

in which \(\alpha > 0 \) is some positive constant.

i. Show that \(y \) is periodic and find its period \(q \).

ii. Suppose \(y \) has FS representation

\[
\forall t, \quad y(t) = \sum_{k=-\infty}^{\infty} Y_k \exp(k\omega_1 t),
\]

What is \(\omega_1 \)? Determine the \(Y_k \) in terms of the \(X_k \).

8. Give an example of a nonlinear, time-invariant system \(S \) that is not memoryless. Time is discrete.

(a) Show that \(S \) is nonlinear, time-invariant, and not memoryless.

(b) Suppose \(x : \text{Ints} \to \text{Reals} \) is periodic with period \(p \). Let \(y = S(x) \). Is \(y \) periodic?

(c) Suppose \(Q \) is another discrete-time, time-invariant system. Is the cascade composition \(S \circ Q \) time-invariant? Give a proof or a counterexample.

(d) Define the system \(R \) by reversing time: \(\forall x, n, R(x)(n) = S(x)(-n) \). Is \(R \) time-invariant? Why? If \(x \) is periodic as above and \(w = R(x) \), is \(w \) periodic? Why.

9. You are given three kinds of building blocks for discrete-time systems: one-unit delay; gains; and adders.

(a) Use these building blocks to implement the system:

\[
y(n) = 0.5y(n-2) + x(n) + x(n-1).
\]

(b) Take the outputs of the delay elements as the state and give a \([A, b, d', d] \) representation of this system.

(c) You are allowed to set the output of the delay elements to any value at time \(n = 0 \). Select these values so that the output of your implementation is the solution \(y(n), n \geq 0 \) for any input \(x(n), n \geq 0 \) and initial conditions: \(y(-1) = 0.5, y(-2) = 0.8, x(-1) = 1 \). Now suppose \(x(0) = x(1) = x(2) = 0 \). Calculate \(y(0), y(1), y(2) \).
10. An integrator can be used as a building block: For any input $x : \text{Reals} \to \text{Reals}$, its output is:

$$\forall t \geq 0, \quad y(t) = y_0 + \int_0^t x(s)\,ds.$$

The ‘initial condition’ $y(0)$ can be set.

Use integrators, gains and adders to implement the system:

$$\frac{d^2y}{dt^2}(t) - y(t) = x(t),$$

with initial condition $y(0) = 1, \dot{y}(0) = 0$.

Hint First convert a differential equation into an integral equation and then implement.

11. A periodic signal $x : \text{Reals} \to \text{Reals}$ is given by

$$\forall t, \quad x(t) = \left[1 + \cos(2\pi \times 10t)\right] \times \cos(2\pi \times 400t).$$

(a) What are the fundamental frequency ω_0 and period T_0 of x? Calculate the Fourier Series of x in the forms:

$$\forall t, \quad x(t) = A_0 + \sum_{k=1}^{\infty} A_k \cos(k\omega_0t + \phi_k)$$

$$= \sum_{k=-\infty}^{\infty} X_k e^{ik\omega_0t}$$

Is $X_k = X^*_{-k}$?

(b) Suppose the LTI system S has frequency response

$$\forall \omega, \quad H(\omega) = \begin{cases} 1, & \text{if } 2\pi \times 395 \leq |\omega| \leq 2\pi \times 405 \\ 0, & \text{otherwise} \end{cases}$$

Plot the magnitude and phase response of H. Repeat part 11a for y.

12. Give the ABCD state space representation of a discrete-time system with frequency response $H(\omega)$, where:

$$H(\omega) = \frac{2 + e^{-j\omega}}{1 - 3e^{-3j\omega}}$$

Hint: First find a difference equation which has the given frequency response. Then find the state space representation.

13. You are given the signal $\forall t x(t) = \cos(20\pi t) + 1 - 2 \sin(25\pi t)$ to use as input to a system with frequency response $H(\omega) = |\omega|$. Answer the following questions based on this setup.

(a) Indicate the Fourier series expansion (in cosine format) of x by writing the nonzero values of A_0, A_k, and ϕ_k in the expansion $x(t) = A_0 + \sum_{k=1}^{\infty} A_k \cos(k\omega_0t + \phi_k)$.
(b) Indicate the Fourier series expansion (in complex exponential format) of \(x(t) \) by writing the nonzero values of the complex coefficients \(X_k \) in the expansion \(x(t) = \sum_{k=-\infty}^{\infty} X_k e^{jk\omega_0 t} \).

(c) Give \(y \), the output of the system with input \(x \).