EECS 20. Midterm No. 2 Practice Problems Solution, November 10, 2004.

1. When the inputs to a time-invariant system are: $\forall n$,

$$
\begin{aligned}
& x_{1}(n)=2 \delta(n-2) \\
& x_{2}(n)=\delta(n+1)
\end{aligned}, \quad \text { where } \delta \text { is the Kronecker delta }
$$

the corresponding outputs are

$$
\begin{aligned}
& y_{1}(n)=\delta(n-2)+2 \delta(n-3) \\
& y_{2}(n)=2 \delta(n+1)+\delta(n) \quad, \quad \text { respectively. }
\end{aligned}
$$

Is this system is linear? Give a proof or a counter-example.
Answer to 1 The system is not linear. From time-invariance we see that for the second pair of input and output,

$$
\begin{aligned}
& x_{2}(n-3)=\delta(n-2) \\
& y_{2}(n-3)=2 \delta(n-2)+\delta(n-3)
\end{aligned}
$$

So we can rewrite the first pair of input and output as

$$
\begin{aligned}
x_{1}(n-3) & =2 \delta(n-2) \\
& =2 x_{2}(n-3) \\
y_{1}(n-3) & =\delta(n-2)+2 \delta(n-3) \\
& \neq 2 y_{2}(n-3)
\end{aligned}
$$

Therefore, the system is not linear.
2. Consider discrete-time systems with input and output signals $x, y \in[$ Integers \rightarrow Reals $]$. Each of the following relations defines such a system. For each, indicate whether it is linear(L), time-invariant (TI), both(LTI), or neither (N). Give a proof or counter-example.
(a) $y(n)=g(n) x(n)$
(b) $y(n)=e^{x(n)}$

Answer to 2
(a) The system is linear:

$$
\begin{aligned}
\hat{x}(n) & =a x_{1}(n)+b x_{2}(n) \\
\hat{y}(n) & =g(n)\left(a x_{1}(n)+b x_{2}(n)\right) \\
& =a y_{1}(n)+b y_{2}(n)
\end{aligned}
$$

Also the system is time-varying if g is not constant (so there exist n, m_{0} so that $g(n) \neq$ $g\left(n-n_{0}\right)$):

$$
\begin{aligned}
\hat{x}(n) & =x\left(n-n_{0}\right) \\
\hat{y}(n) & =g(n) \hat{x}(n) \\
& =g(n) x\left(n-n_{0}\right) \\
& \neq y\left(n-n_{0}\right) \\
& =g\left(n-n_{0}\right) x\left(n-n_{0}\right)
\end{aligned}
$$

(b) The system is non-linear:

$$
\begin{aligned}
\hat{x}(n) & =a x_{1}(n)+b x_{2}(n) \\
\hat{y}(n) & =e^{\hat{x}(n)} \\
& =e^{a x_{1}(n)+b x_{2}(n)} \\
& =\left(y_{1}(n)\right)^{a}\left(y_{2}(n)\right)^{b} \\
& \neq a y_{1}(n)+b y_{2}(n)
\end{aligned}
$$

But the system is time-invariant:

$$
\begin{aligned}
\hat{x}(n) & =x\left(n-n_{0}\right) \\
\hat{y}(n) & =e^{\hat{x}(n)} \\
& =e^{x\left(n-n_{0}\right)} \\
& =y\left(n-n_{0}\right)
\end{aligned}
$$

3. (a) An LTI system with input signal x and output signal y is described by the differential equation

$$
\ddot{y}(t)+2 \dot{y}(t)+0.5 y(t)=x(t) .
$$

Suppose the input signal is $\forall t, x(t)=e^{i \omega t}$, where ω is fixed. What is its output signal y ?
(b) Another LTI system is subject to the differential equation

$$
\ddot{y}(t)+y(t)=\dot{x}(t)+x(t)
$$

i. What is the frequency response?
ii. What is the magnitude and phase of the frequncy response for $\omega=0.5$?

Answer to 3

(a) The output signal is $\forall t, y(t)=H(\omega) e^{i \omega t}$. It follows that

$$
-\omega^{2} H(\omega) e^{i \omega t}+2 i \omega H(\omega) e^{i \omega t}+0.5 H(\omega) e^{i \omega t}=e^{i \omega t}
$$

thus $H(\omega)=\frac{1}{-\omega^{2}+2 i \omega+0.5}$, Hence

$$
\forall t, y(t)=\frac{1}{-\omega^{2}+2 i \omega+0.5} e^{i \omega t}
$$

(b) (i) The frequency response is $H(\omega)=\frac{i \omega+1}{-\omega^{2}+1}$.
(ii) Hence

$$
|H(0.5)|=\left|\frac{4}{3}+i \frac{2}{3}\right|=\frac{2 \sqrt{5}}{3}, \quad \angle H(0.5)=\frac{\pi}{6}
$$

4. For this problem, assume discrete time everywhere. Given two LTI systems S and T suppose signal f is input into S and g into T. The input and output signals are displayed in figure 1. Are the two systems identical, that is, $S=T$?

Figure 1: Signals for problem 4
Answer to 4 No. $S \neq T$ Argue by contradiction. Assume $S=T=R$, say. Observe that $f(n)$ is $(g-f)(n+1)$. The figure below plots $R(g-f)(n)=T(g)(n)-S(f)(n)$ and $R((g-f))(n+1)=R(f)(n)=S(f)(n)$. But the second plot is not the first plot delayed by 1 .
5. A system is described by the difference equation

$$
\begin{equation*}
y(n)=x(n)+b x(n-1)+a y(n-1) \tag{1}
\end{equation*}
$$

wherein a, b are constants.
(a) Obtain the $\left[A, b, c^{T}, d\right]$ representation of this system by:
i. choosing the state,
ii. calculating A, b, c^{T}, d for your choice of state.
(b) If $x(n-1)=0, y(n-1)=1$, calculate the zero-input (i.e. $x(n)=0, n \geq 0$) state response.

(c) Calculate the frequency response of this system.

Answer to 5 (a) (i) Take the state as $s(n)=[x(n-1), y(n-1)]^{T}$.
(ii) Writing $s(n+1)=A s(n)+b x(n)$ in expanded form gives

$$
\begin{aligned}
s(n+1) & =\left[\begin{array}{l}
x(n) \\
y(n)
\end{array}\right]=\left[\begin{array}{c}
x(n) \\
x(n)+b x(n-1)+a y(n-1)
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 & 0 \\
b & a
\end{array}\right]\left[\begin{array}{l}
x(n-1) \\
y(n-1)
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right] x(n),
\end{aligned}
$$

from which

$$
A=\left[\begin{array}{ll}
0 & 0 \tag{2}\\
b & a
\end{array}\right], \quad b=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

and, since

$$
y=\left[\begin{array}{ll}
b & a
\end{array}\right]\left[\begin{array}{l}
x(n-1) \\
y(n-1)
\end{array}\right]+x(n),
$$

so $c^{T}=\left[\begin{array}{ll}b & a\end{array}\right], d=1$.
(b) The zero-input state response is $s(n)=A^{n} s(0), n \geq 0$. So we need to calculate A^{n}, with A given in (2). By induction,

$$
A^{n}=\left[\begin{array}{cc}
0 & 0 \\
a^{n-1} b & a^{n}
\end{array}\right]
$$

and since $s(0)=\left[\begin{array}{ll}0 & 1\end{array}\right]^{T}, s(n)=\left[\begin{array}{ll}0 & a^{n}\end{array}\right]$.
(c) To obtain the frequency response, substitute $x(n)=e^{\text {jomegan }}, y(n)=H(\omega) e^{i \omega n}$ in)(1) and simplify to get

$$
\forall \omega, \quad H(\omega)=\frac{1+b e^{-i \omega}}{1-a e^{i \omega}}
$$

6. For the linear difference equation

$$
y(n)=0.5 y(n-1)+x(n)
$$

(a) Taking the state at time n to be $s(n)=y(n-1)$, write down the zero-input response, the zero-state impulse response $h:$ Ints \rightarrow Reals, the zero-state response, and the (full) response.
(b) Show that the zero-input response $y_{z i}$ is a linear function of the initial state, i.e. it is of the form

$$
\forall n \geq 0, \quad y_{z i}(n)=a(n) s(0)
$$

for some constant coefficients $a(n)$. Then show that

$$
\lim _{n \rightarrow \infty} y_{z i}(n)=0
$$

(c) Suppose s_{0} is the initial state and the input is a unit step, i.e. $x(n)=1, n \geq 0 ;=0, n<$ 0 . Determine the response $y(n), n \geq 0$, and calculate the steady state response

$$
y_{s s}=\lim _{n \rightarrow \infty} y(n)
$$

(d) Plot the input, output and the steady state value in the previous part.
(e) Calculate the frequency response $H:$ Reals \rightarrow Complex and plot the magnitude and phase response.
(f) Suppose $x(n)=1,-\infty<n<\infty$. What is the output $y(n),-\infty<n<\infty$ and compare it with $y_{s s}$.

Answer to 6 (a) The a, b, c, d representation is (with $s(n)=y(n-1)$)

$$
s(n+1)=0.5 s(n)+x(n), \quad y(n)=0.5 s(n)+x(n)
$$

The zero-input response ($x(n)=0, n \geq 0$) is

$$
\begin{equation*}
s_{z i}(n)=0.5^{n} s(0), \quad y_{z i}(n)=0.5^{n+1} s(0)=0.5^{n+1} y(-1) \tag{3}
\end{equation*}
$$

The zero-state impulse response is

$$
\forall n \geq 0, \quad h(n)=\left\{\begin{array}{ll}
d=1, & n=0 \\
c a^{n-1} b=0.5^{n}, & n \geq 1
\end{array}=0.5^{n} .\right.
$$

Figure 2: Plots for problem 6

So the full response is

$$
\begin{equation*}
y(n)=0.5^{n+1} y(-1)+\sum_{m=0}^{n} 0.5^{n-m} x(m), n \geq 0 . \tag{4}
\end{equation*}
$$

(b) From (3) $y_{z i}$ is a linear (time-varying) function of the initial state with $a(n)=0.5^{n+1}$. Clearly, $y_{z i}(n) \rightarrow 0$ as $n \rightarrow \infty$.
(c)In (4) take $x(m)=1, m \geq 0$ to get

$$
\begin{aligned}
y(n) & =0.5^{n+1} s_{0}+\sum_{m=0} n 0.5^{n-m} \times 1 \\
& =\quad 0.5^{n+1} s_{0}+\sum_{k}=0^{n} 0.5^{k}=0.5^{n+1} s_{0}=\frac{1-0.5^{n+1}}{1-0.5} \\
\rightarrow y_{s s}=2 \text { as } n \rightarrow \infty &
\end{aligned}
$$

(d) The plots are straightforward.
(e) The frequency response is

$$
\forall \omega, \quad H(\omega)=\frac{1}{1-0.5 e^{i \omega}},
$$

the magnitude response is

$$
\forall \omega, \quad|H(\omega)|=\frac{1}{[1.25-\cos (\omega)]^{1 / 2}},
$$

the phase response is

$$
\forall \omega, \quad \angle H(\omega)=\tan ^{-1} \frac{0.5 \sin (\omega)}{1-0.5 \cos (\omega)} .
$$

The plots in figure 2 are for $0 \leq \omega \leq \pi$:
(f) In this case $x(n) \equiv e^{i 0 n}$, so $y(n) \equiv H(0) e^{i 0 n}=2=y_{s s}$.
7. Suppose x is a continuous-time periodic signal, with period p and exponential FS representation,

$$
\forall t, \quad x(t)=\sum_{k=-\infty}^{\infty} X_{k} \exp \left(i k \omega_{0} t\right),
$$

in which $\omega_{0}=2 \pi / p$.
(a) Write down the formula for X_{k} in terms of x.
(b) Consider the signal y,

$$
\forall t, \quad y(t)=x(\alpha t),
$$

in which $\alpha>0$ is some positive constant.
i. Show that y is periodic and find its period q.
ii. Suppose y has FS representation

$$
\forall t, \quad y(t)=\sum_{k=-\infty}^{\infty} Y_{k} \exp \left(k \omega_{1} t\right)
$$

What is ω_{1} ? Determine the Y_{k} in terms of the X_{k}.
Answer to 7 (a) The formula is

$$
\begin{equation*}
X_{k}=\frac{1}{p} \int_{0}^{p} x(t) e^{-i k \omega_{0} t} d t \tag{5}
\end{equation*}
$$

(b) We want $y(t)=x(\alpha t)=y(t+q)=x(\alpha(t+q))=x(t+p)$, so $\alpha q=p$ or $q=p / \alpha$. So the FS of y is

$$
\begin{aligned}
y(t) & =\sum_{k} Y_{k} e^{i k \omega_{1} t} \\
& =\sum_{k} X_{k} e^{i k \alpha \omega_{0} t}
\end{aligned}
$$

from which $\omega_{1}=\alpha \omega_{0}$ and $Y_{k}=X_{k}$.
8. Give an example of a nonlinear, time-invariant system S that is not memoryless. Time is discrete.
(a) Show that S is nonlinear, time-invariant, and not memoryless.
(b) Suppose $x:$ Ints \rightarrow Reals is periodic with period p. Let $y=S(x)$. Is y periodic?
(c) Suppose Q is another discrete-time, time-invariant system. Is the cascade composition $S \circ Q$ time-invariant? Give a proof or a counterexample.
(d) Define the system R by reversing time: $\forall x, n, R(x)(n)=S(x)(-n)$. Is R timeinvariant? Why? If x is periodic as above and $w=R(x)$, is w periodic? Why.

Answer to 8 One possible system is

$$
\forall x, \forall n, \quad S(x)(n)=[x(n-1)]^{2} .
$$

(a) S is clearly nonlinear since, if $x(n-1) \neq 0, S(2 x)(n)=4[x(n-1)]^{2} \neq 2[x(n-1)]^{2}$. S is time-invariant, since for any integer T,

$$
S \circ D_{T}(x)(n)=[x(n-T-1)]^{2}=D_{T} \circ S(x)(n) .
$$

S is not memoryless, because if it is there is $f:$ Reals \rightarrow Reals with

$$
S(x)(n)=f(x(n)) .
$$

But this will not hold if we choose $x, n, n-1$ so that $x(n)=0$ and $[x(n-1)]^{2} \neq f(0)$.
(b) Yes it is periodic, since

$$
S(x)(n+p)=D_{-p} \circ S x(n)=S \circ D_{-p}(x)(n)=S(x)(n),
$$

since $D_{-p} x=x$ because x is periodic with period p.
(c) The composiiton of any two time-invariant systems is periodic, since

$$
D_{T} \circ(Q \circ S)=Q \circ D_{T} \circ S=(Q \circ S) \circ D_{T} .
$$

(d) R is not time-invariant, because

$$
\begin{aligned}
& D_{T} \circ R(x)(n)=R(x)(n-T)=S(x)(-n+T)=[x(-n+T-1)]^{2} \\
& R \circ D_{T}(x)(n)=S \circ D_{T}(x)(-n)=\left[D_{T}(x)(-n-1)\right]^{2}=[x(-n-1-T)]^{2} .
\end{aligned}
$$

These two quantities are not equal for particular choices of x, n, T. w is periodic with the same period p, because by part (b) $S(x)$ is periodic with period p, so

$$
w(n+p)=S(x)(-n-p)=S(x)(-n)=R(x)(n)=w(n) .
$$

9. You are given three kinds of building blocks for discrete-time systems: one-unit delay; gains; and adders.
(a) Use these building blocks to implement the system:

$$
\begin{equation*}
y(n)=0.5 y(n-2)+x(n)+x(n-1) . \tag{6}
\end{equation*}
$$

(b) Take the outputs of the delay elements as the state and give a $\left[A, b, C^{T}, d\right]$ representation of this system.
(c) You are allowed to set the output of the delay elements to any value at time $n=0$. Select these values so that the output of your implementation is the solution $y(n), n \geq 0$ for any input $x(n), n \geq 0$ and initial conditions: $y(-1)=0.5, y(-2)=0.8, x(-1)=1$. Now suppose $x(0)=x(1)=x(2)=0$. Calculate $y(0), y(1), y(2)$.

Figure 3: Implementation for problem 9

Answer to 9 (a) Figure 3 is one implementation.
(b) Taking $s(n)=[x(n-1) y(n-1) y(n-2)]^{T}$ and using (6) we get

$$
\begin{aligned}
s(n+1) & =\left[\begin{array}{r}
x(n) \\
y(n) \\
y(n-1)
\end{array}\right]=\left[\begin{array}{rrr}
0 & 0 & 0 \\
1 & 0 & 0.5 \\
0 & 1 & 0
\end{array}\right] s(n)+\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \\
y(n) & =\left[\begin{array}{ll}
1 & 0.5
\end{array}\right] s(n)+1 \times x(n)
\end{aligned}
$$

from which we can read off A, b, c, d.
(c) We take the initial state as $s(0)=[x(-1) y(-1) y(-2)]^{T}=\left[\begin{array}{lll}1 & 0.5 & 0.8\end{array}\right]^{T}$. Then

$$
\begin{aligned}
& y(0)=c^{T} s(0)=\left[\begin{array}{lll}
1 & 0 & 0.5
\end{array}\right] s(0)=1.4 \\
& y(1)=c^{T} A s(0)=0.5^{2}=0.25 \\
& y(2)=c^{T} A^{2} s(0)=0.7
\end{aligned}
$$

One can also get these directly from (6).
10. An integrator can be used as a building block: For any input $x:$ Reals \rightarrow Reals, its output is:

$$
\forall t \geq 0, \quad y(t)=y_{0}+\int_{0}^{t} x(s) d s
$$

The 'initial condition' $y(0)$ can be set.
Use integrators, gains and adders to implement the system:

$$
\begin{equation*}
\frac{d^{2} y}{d t^{2}}(t)-y(t)=x(t) \tag{7}
\end{equation*}
$$

with iniital condition $y(0)=1, \dot{y}(0)=0.4$.
Hint First convert a differential equation into an integral equation and then implement.
Answer to 10 Figure 4 shows the implementation

Figure 4: Implementation for problem 10
11. A periodic signal $x:$ Reals \rightarrow Reals is given by

$$
\forall t, \quad x(t)=[1+\cos (2 \pi \times 10 t)] \times \cos (2 \pi \times 400 t) .
$$

(a) What are the fundamental frequency ω_{0} and period T_{0} of x ? Calculate the Fourier Series of x in the forms:

$$
\begin{aligned}
\forall t, \quad x(t) & =A_{0}+\sum_{k=1}^{\infty} A_{k} \cos \left(k \omega_{0} t+\phi_{k}\right) \\
& =\sum_{k=-\infty}^{\infty} X_{k} e^{i k \omega_{0} t}
\end{aligned}
$$

Is $X_{k}=X_{-k}^{*}$?
(b) Suppose the LTI system S has frequency response

$$
\forall \omega, \quad H(\omega)= \begin{cases}1, & \text { if } 2 \pi \times 395 \leq|\omega| \leq 2 \pi \times 405 \\ 0, & \text { otherwise }\end{cases}
$$

Plot the magnitude and phase response of H. Repeat part 11a for y.

Answer to 11 Using

$$
\cos (x) \cos (y)=\frac{1}{2} \cos (x+y)+\frac{1}{2} \cos (x-y),
$$

gives

$$
x(t)=\cos (2 \pi \cdot 400 t)+\frac{1}{2} \cos (2 \pi \cdot 390 t)+\frac{1}{2} \cos (2 \pi \cdot 410 t),
$$

from which
(a) $\omega_{0}=2 \pi \cdot 10 \mathrm{rad} / \mathrm{sec}$ and $t_{0}=0.1 \mathrm{sec}$. Also

$$
A_{39}=0.5, \quad A_{40}=0.5, \quad A_{k}=0, \text { else } ; \forall k \phi_{k}=0
$$

and

$$
\begin{aligned}
& X_{k}=\frac{1}{2} A_{|k|} e^{\phi_{k} \operatorname{sgn}(k)} \text { in which } \operatorname{sgn}(k)=1, k \geq 0 ;=0, k<0 . \text { So } \\
& \quad X_{39}=X_{-39}=X_{41}=X_{-41}=0.25 ; \quad X_{40}=X_{-40}=0.5 ; \quad X_{k}=0, \text { else. }
\end{aligned}
$$

(b) This system is a bandpass filter, in which only sinusoids with frequencies within specified range go through unchanged and the others become 0 . Thus

$$
\forall t, \quad y(t)=\cos (2 \pi \cdot 400 t) ; \quad \omega_{0}=2 \pi \cdot 400 \mathrm{rad} / \mathrm{sec} ; \quad T_{0}=\frac{1}{400} \mathrm{sec} .
$$

So,

$$
\begin{aligned}
& A_{1}=1 ; \quad A_{k}=0, k \neq 1 ; \quad \phi_{k}=0, \forall k, \\
& X_{1}=X_{-1}=0.5 ; \quad X_{k}=0 \text { else }
\end{aligned}
$$

12. Give the ABCD state space representation of a discrete-time system with frequency response $H(\omega)$, where:

$$
H(\omega)=\frac{2+e^{-j \omega}}{1-3 e^{-3 j \omega}}
$$

Hint: First find a difference equation which has the given frequency response. Then find the state space representation.
Answer to 12 From

$$
H(\omega)\left[1-3 e^{-3 j \omega}\right]=2+e^{-j \omega}
$$

we see that H is the frequency response of the difference equation

$$
y(n)-3 y(n-3)=2 x(n)+x(n-1) .
$$

So we select

$$
\begin{aligned}
& s(n)=\left[\begin{array}{l}
x(n-1) \\
y(n-1) \\
y(n-2) \\
y(n-3)
\end{array}\right] \\
& A=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 3 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \quad B=\left[\begin{array}{l}
1 \\
2 \\
0 \\
0
\end{array}\right] \\
& C^{T}=\left[\begin{array}{llll}
1 & 0 & 0 & 3
\end{array}\right] \quad D=2
\end{aligned}
$$

13. You are given the signal $\forall t x(t)=\cos (20 \pi t)+1-2 \sin (25 \pi t)$ to use as input to a system with frequency response $H(\omega)=|\omega|$. Answer the following questions based on this setup.
(a) Indicate the Fourier series expansion (in cosine format) of x by writing the nonzero values of A_{0}, A_{k}, and ϕ_{k} in the expansion $x(t)=A_{0}+\sum_{k=1}^{\infty} A_{k} \cos \left(k \omega_{0} t+\phi_{k}\right)$.
(b) Indicate the Fourier series expansion (in complex exponential format) of $x(t)$ by writing the nonzero values of the complex coefficients X_{k} in the expansion $x(t)=\sum_{k=-\infty}^{\infty} X_{k} e^{j k \omega_{0} t}$.
(c) Give y, the output of the system with input x.

Answer to 13 (a) First rewrite $x(t)=\cos (20 \pi t)+1-2 \sin (25 \pi t)$ in terms of cosines:

$$
x(t)=1+\cos (20 \pi t)+2 \cos \left(25 \pi t+\frac{\pi}{2}\right)
$$

Next find the fundamental frequency. The largest frequency that evenly divides both 20π and 25π is $\omega_{0}=5 \pi$. We rewrite $x(t)$ in terms of nonzero coefficients:

$$
\begin{aligned}
x(t) & =1+1 \cos (4(5 \pi) t+0)+2 \cos \left(5(5 \pi) t+\frac{\pi}{2}\right) \\
& =A_{0}+A_{4} \cos \left(4 \omega_{0} t+\phi_{4}\right)+A_{5} \cos \left(5 \omega_{0} t+\phi_{5}\right)
\end{aligned}
$$

We see from above that $A_{0}=1, A_{4}=1, \phi_{4}=0, A_{5}=2, \phi_{5}=\frac{\pi}{2}$, and all other A_{k} and ϕ_{k} are zero.
(b) We can calculate the X_{k} 's directly, but since we've already calculated the A_{k} 's, let's use them to derive the X_{k} 's. (See also page 302 in the text.) Note in particular that with complex exponentials, we have negative frequency and complex coefficients instead of phases, meaning that the X_{k} 's are complex and k can be negative.
Recalling that

$$
\cos (t)=\frac{e^{j t}+e^{-j t}}{2}
$$

we can say that, for positive k :

$$
\begin{aligned}
A_{k} \cos \left(\omega_{0} k t+\phi_{k}\right) & =\frac{A_{k} e^{j \phi_{k}}}{2} e^{j \omega_{0} k t}+\frac{A_{k} e^{-j \phi_{k}}}{2} e^{-j \omega_{0} k t} \\
& =X_{k} e^{j \omega_{0} k t}+X_{-k} e^{j \omega_{0}(-k) t}
\end{aligned}
$$

In our case, we have three nonzero A_{k}. We start with A_{0}. Since $\cos (0)=e^{j 0}=1$, we conclude that $X_{0}=A_{0}$.
For A_{4}, we relate the frequency components at $\omega= \pm 4 \omega_{0}$:

$$
1 \cos \left(4 \omega_{0} t\right)=\frac{1}{2} e^{4 j \omega_{0} t}+\frac{1}{2} e^{-4 j \omega_{0} t}
$$

and conclude that $X_{4}=1 / 2$ and $X_{-4}=1 / 2$.

And finally, for A_{5} and ϕ_{5}, we relate the frequency components at $\omega= \pm 5 \omega_{0}$.

$$
\begin{aligned}
2 \cos \left(5 \omega_{0} t\right) & =e^{j \pi / 2} e^{5 j \omega_{0} t}+e^{-j \pi / 2} e^{-5 j \omega_{0} t} \\
& =i e^{5 j \omega_{0} t}-i e^{-5 j \omega_{0} t}
\end{aligned}
$$

and conclude that $X_{5}=i$ and $X_{5}=-i$.
(c) We can either apply the frequency response to the eigenfunctions or we can look at $x(t)$ directly and see how it behaves when sent through the system.
Let's start with the latter approach.
Looking at $x(t)=\cos (20 \pi t)+1-2 \sin (25 \pi t)$, we see it has components at $\omega=0, \omega=$ 20π, and $\omega=25 \pi$. The frequency response is simple enough that we can see that the DC component (i.e. the component at $\omega=0$) gets completely attenuated (i.e. multiplied by 0). The other two components are scaled by the absolute value of their frequency, leading to:

$$
\begin{aligned}
y(t) & =(0) 1+(20 \pi) \cos (20 \pi t)-(25 \pi) 2 \sin (25 \pi t) \\
& =20 \pi \cos (20 \pi t)-50 \pi \sin (25 \pi t)
\end{aligned}
$$

If the frequency response had been more complicated, we may have preferred another approach:

We already have the complex exponential breakdown of the input signal, meaning that we know the input signal in terms of scaled eigenfunctions. We can therefore apply the frequency response:

$$
\begin{aligned}
y(t)= & H(0) X_{0} \\
& +X_{4} H\left(4 \omega_{0}\right) e^{4 j \omega_{0} t}+X_{-4} H\left(-4 \omega_{0}\right) e^{-4 j \omega_{0} t} \\
& +X_{5} H\left(5 \omega_{0}\right) e^{j 5 \omega_{0} t}+X_{-5} H\left(-5 \omega_{0}\right) e^{-5 j \omega_{0} t} \\
= & 0+\frac{1}{2}|20 \pi| e^{20 \pi t}+\frac{1}{2}|-20 \pi| e^{-20 \pi t}+|25 \pi| i e^{25 \pi t}+|-25 \pi|(-i) e^{-25 \pi t} \\
= & 20 \pi \frac{e^{20 \pi t}+e^{-20 \pi t}}{2}+50 \pi\left(i^{2}\right) \frac{e^{25 \pi t}-e^{-25 \pi t}}{2 i} \\
= & 20 \pi \frac{e^{20 \pi t}+e^{-20 \pi t}}{2}-50 \pi \frac{e^{25 \pi t}-e^{-25 \pi t}}{2 i} \\
= & 20 \pi \cos (20 \pi t)-50 \pi \sin (25 \pi t)
\end{aligned}
$$

which is the same result as with the other method.
14. In the negative feedback system of figure 5 assume that $H(\omega)=[1+i \omega]^{-1}$. Let G be the closed-loop frequency response. For $K=1,10,100$
(a) Plot the magnitude and phase response of G; and
(b) determine the bandwidth ω at which $\angle G(\omega)=\pi / 4$.

Figure 5: Feedback system for problem 14

Figure 6: Frequency response for problem 14

Answer to 14 The closed loop frequency response is

$$
\forall \omega, \quad G(\omega)=\frac{K H(\omega)}{1+K H(\omega)}=\frac{K}{(K+1)+i \omega}
$$

(a) So

$$
|G(\omega)|=\frac{K}{\left[(K+1)^{2}+\omega^{2}\right]^{1 / 2}}, \quad \angle G(\omega)=-\tan ^{-1} \frac{\omega}{K+1} .
$$

(b) See figure 6
15. Determine the 'gain' k and the guard so that the output of the hybrid system is as shown in figure 7
Answer to 15 The gain and guard are given in figure 7 .

Figure 7: Hybrid system for problem 15

