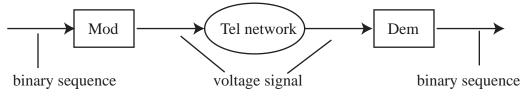
EECS20n, Quiz 1, 9/7/04, Solution


1. For each expression indicate whether the expression is well-formed; if it is well-formed, indicate whether it is an assertion; if it is an assertion, indicate its truth value True or False.

Expression	Well-formed	Assertion	Truth value
	(Y or N)	(Y or N)	(T or F)
$x \ge 4 \Longrightarrow x \ge 3$	Y	Y	Y
$x \ge 5 \land y \le 6$	Y	N	
$5 \wedge x$	N		
$\exists x, x > 3$	Y	Y	Y
$\forall x, x > 3$	Y	Y	N

- 2. Indicate whether the following statements are **true** or **false**. Put a box around your answer.
 - (a) There exists a function $f:[0,1]\to [0,1]$ whose graph is graph $(f)=\{(x,x)\mid x\in [0,1]\}$ True
 - (b) Let $f: Reals \to Reals$ and $g: Reals \to Reals$. Define the functions f+g by $\forall x \in Reals$, (f+g)(x)=f(x)+g(x), and $g\circ f$ by $\forall x \in Reals$, $(g\circ f)(x)=f(g(x))$. Then

$$f+g = g+f$$
 True $f \circ g = g \circ f$ False

3. The following figure represents an interconnection of three systems: a modulator (mod) that transforms a binary sequence into a sound-like voltage, a telephone network that transmits voltage waveforms, and a demodulator that transforms sound-like voltage into a binary sequence.

Define appropriate signal spaces of binary sequences and voltage signals in the form $[Domain \rightarrow Range]$:

Binary Sequences =
$$[Nats \rightarrow \{0, 1\}]$$

$$Voltage\ Signals = [Time \rightarrow Volts] = [\textit{Reals} \rightarrow \textit{Reals}]$$