EECS20n, Quiz 3, 9/30/04, Solution

1. 4 points

(i) Put a box around the correct choice concerning (1):
M, N, M and N, neither M nor N has state-determined output.
(ii) Give the state machine (2) of the composition.
(1)

(2)
2. 6 points For each statement below, determine if it is true or false and put a box around your answer.
(1) There is no 2-state machine with Inputs $=$ Outputs $=\{0,1\}$ that recognizes the pattern 111. T
(2) If the constant input $x=(0,0,0, \cdots)$ is input to a machine with n states, the output will eventually be periodic i.e. of the form:

$$
y=\left(y_{0}, \cdots, y_{p}, y_{p+1}, \cdots, y_{p+k}, y_{p+1}, \cdots, y_{p+k}, \cdots\right) T
$$

(3) If a deterministic machine B simulates machine A with the simulation relation $S_{A B} \subset$ States $_{A} \times$ States $_{B}$, then A simulates B with the simulation relation

$$
S_{B A}=\left\{\left(s_{B}, s_{A}\right) \mid\left(s_{A}, s_{B}\right) \in S_{A B}\right\} T
$$

(4) Suppose machine B_{1} simulates A_{1} and B_{2} simulates A_{2}. Then the cascade composition of B_{2} and B_{1} simulates the cascade composition of A_{2} and A_{1}. T

