EECS20n, Quiz 6 Solution, 11/2/04

1. Let $g:$ Ints \rightarrow Reals be any signal. Let $p \in$ Ints and define $f:$ Ints \rightarrow Reals by

$$
\begin{equation*}
\forall n, \quad f(n)=\sum_{k=-\infty}^{\infty} g(n-k p) . \tag{1}
\end{equation*}
$$

i. 2 points Prove that f is periodic with period p.

Proof $\forall n$,

$$
f(n+p)=\sum_{k=-\infty}^{\infty} g(n+p-k p)=\sum_{k=-\infty}^{\infty} g(n-(k-1) p)=f(n)
$$

ii. $\mathbf{2}$ points Suppose g is given by

$$
\forall n, \quad g(n)= \begin{cases}0.5, & n=0,5 \\ 1, & 1 \leq n \leq 4 \\ 0, & n>5\end{cases}
$$

Plot g and f given by (1) for $p=5$.

2. 3 points For the signals x : Ints $\rightarrow C$ given below, determine if x is periodic (Y or N); and if it is periodic, determine its period.

$\forall n, x(n)=$	x is periodic $(\mathrm{Y}$ or N$)$	period of x is
$e^{i \frac{i}{5} \pi n}$	Y	5
$e^{i \frac{2}{5} \pi n}+e^{i \frac{2}{3} \pi n}$	Y	15
$e^{i \sqrt{2} \pi n}$	N	

3. Suppose a differentiable periodic signal f has the Fourier Series representation

$$
\forall t \in \text { Reals, } \quad f(t)=A_{0}+\sum_{k=1}^{\infty} A_{k} \cos \left(k \omega_{0} t+\phi_{k}\right)
$$

Its derivative g is also periodic with Fourier Series representation: $\forall t$
$\forall t \in$ Reals, $\quad g(t)=\frac{d f}{d t}=0+\sum_{k=1}^{\infty}-k \omega_{0} A_{k} \sin \left(k \omega_{0} t+\phi_{k}\right)=\sum_{k=1}^{\infty} k \omega_{0} A_{k} \cos \left(k \omega_{0} t+\frac{\pi}{2}+\phi_{k}\right)$
using $-\sin \alpha=\cos \left(\frac{\pi}{2}+\alpha\right)$.
3 points Determine B_{0}, B_{k}, θ_{k} in terms of A_{0}, A_{k}, ϕ_{k} :

$$
B_{0}=0, \quad B_{k}=k \omega_{0} A_{k}, \quad \theta_{k}=\frac{\pi}{2}+\phi_{k}
$$

