EECS 20n, Diagnostic Takehome Exam, 8/31/04, Solution

1. For the function $f:$ Reals \rightarrow Reals, $\forall x, \quad f(x)=e^{t-5}$,

$$
\frac{d f}{d t}(t)=e^{t-5}, \quad \int_{0}^{t} f(s) d s=\int_{0}^{t} e^{s-5} d s=\left.e^{t-5}\right|_{0} ^{t}=e^{t-5}-e^{-5}
$$

2. Let $z_{1}=3+4 i$ and $z_{2}=5+12 i$ be two complex numbers. Then
(a) $z_{1}+z_{2}=8+16 i$
(b) $z_{1} * z_{2}=15+48 i^{2}+56 i=-33+56 i$
(c) $z_{2} / z_{1}=[(5+12 i) /(3+4 i)] *[(3-4 i) /(3-4 i)]=(63+16 i) / 25=63 / 25+16 / 25 i$
3. (a) $e^{i \pi}=\cos (\pi)+i \sin (\pi)=-1$
(b) Show why $\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta$.

Follows by repeatedly using the formulas (p. 626 of text),

$$
\begin{aligned}
\cos (a+b) & =\cos (a) \cos (b)-\sin (a) \sin (b) \\
\sin (a+b) & =\sin (a) \cos 9 b)+\cos (a) \sin (b)
\end{aligned}
$$

(c) Express $\sin 3 \theta$ in terms of $\sin \theta$.

Using the same formulas, one gets

$$
\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta
$$

(a) Does $\sum_{n=2}^{\infty} \frac{1}{n^{2}}$ converge? Why?

Use the integral test: the function

$$
f:[2, \infty) \rightarrow \text { Reals }, \quad f(t)=1 /(t-1)^{2}
$$

satisfies, $1 / n^{2} \leq f(t), n \leq t \leq n+1$, so

$$
\sum_{n=2}^{\infty} \frac{1}{n^{2}} \leq \int_{2}^{\infty} f(t) d t<\infty
$$

(b) What is
$\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}=$
By L'Hopital's rule (see p. 58 of text),

$$
\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}=\frac{d / d x \sin 2 x(0)}{d / d x x(0)}=2
$$

4. Solve the following first order linear differential equation:

$$
\frac{d y}{d x}=2 x+1
$$

with the initial condition $y(0)=0$. What is $y(1)$? Plot $y(x)$ for $0 \leq x \leq 1$.
The solution is given by

$$
y(x)=\int_{0}^{x}[2 s+1] d s=x^{2}+x
$$

So $y(1)=2$. The plot is not shown: it is a quadratic function, starting at $y(0)=0$.
5. Let A be the matrix

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0.5 & 0.5 \\
0 & 0.5 & 0.5
\end{array}\right]
$$

(a) Verify $A^{2}=A$.

$$
A^{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0.5 & 0.5 \\
0 & 0.5 & 0.5
\end{array}\right] \times\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0.5 & 0.5 \\
0 & 0.5 & 0.5
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0.5 & 0.5 \\
0 & 0.5 & 0.5
\end{array}\right]
$$

(b) Is it invertible? What is A^{-1} ?
A is NOT invertible, since $\operatorname{det}(A)=0$, so A^{-1} does not exist.
(c) Find all its eigenvalues.

The eigenvalues are the solutions of the characteristic equation,

$$
\operatorname{det}[s I-A]=(s-1)\left[(s-0.5)^{2}-0.25\right]=s(s-1)^{2}=0
$$

or $\{0,1\}$: one eigenvalue at 0 , and a double eigenvalue at 1 .

