EECS 20. Solutions to Midterm No. 2. November 12, 1999.

1. 20 points Let $x:$ Reals \rightarrow Comps be a continuous-time signal with Fourier Transform X. The bandwidth of x is defined to be the smallest number Ω_{x} (rads/sec) such that $|X(\omega)|=0$ for $|\omega|>\Omega_{x}$. If there is no such finite number, $\Omega_{x}=\infty$.
Answer the following and give a brief justification for your answer.
(a) If $\forall t, x(t)=1$, what is X and what is the bandwidth of x ?
$\forall \omega, X(\omega)=2 \pi \delta(\omega)$, and so $\Omega_{x}=0$.
(b) If $\forall t, x(t)=\delta(t)$ (Dirac delta), what is X and what is the bandwidth of x ?
$\forall \omega, X(\omega)=1$, and so $\Omega_{x}=\infty$.
(c) If $\forall t, x(t)=\cos (t)$, what is X and what is the bandwidth of x ?
$\forall \omega, X(\omega)=\pi[\delta(\omega-1)+\delta(\omega+1)]$, and so $\Omega_{x}=1$.
(d) If x has bandwidth Ω_{x} what is the bandwidth of the signal $2 x$?

Since the Fourier Transform of $2 x$ is $2 X, \Omega_{2 x}=\Omega_{x}$.
(e) If x has bandwidth Ω_{x} and y has bandwidth $\Omega_{y}>\Omega_{x}$, what is the bandwidth of the signal $x+y$?
Since the Fourier Transform of $x+y$ is $X+Y, \Omega_{x+y}=\Omega_{y}$.

Figure 1: $X Y$ for problem 2
2. 30 points Suppose x is a continuous-time signal, with Fourier Transform X.
(a) What are the units of ω in $X(\omega)$?
radians/second.
(b) Write down the definition of $y=\operatorname{Sampler}_{T}(x)$.
$y:$ Ints \rightarrow Comps and $\forall n \in$ Ints, $y(n)=x(n T)$.
(c) Let $Y(\hat{\omega})$ be the DTFT of y. What are the units of $\hat{\omega}$? radians/sample.
(d) What is Y in terms of X ?

$$
Y(\hat{\omega})=\frac{1}{T} \sum_{k=-\infty}^{\infty} X\left(\frac{\hat{\omega}-2 \pi k}{T}\right) .
$$

(e) Suppose X is as shown in Figure 1. For what values of T will there be no aliasing? The bandwidth of x is π, so there is no aliasing if and only if $\pi<\pi / T$ or $T<1$.
(f) Sketch $Y(\hat{\omega})$ when $T=1 / 2$ and when $T=3 / 4$?

Since in both cases $T<1$, there is no aliasing, and we can use the same sketch for Y as shown in the lower part of Figure 1. Note: Y is periodic with period 2π and the figure shows only one period.
3. 30 points Let $x:$ Ints \rightarrow Reals be a discrete-time signal with DTFT X. Let $h:$ Ints \rightarrow Reals be another signal with DTFT H. Let $y=h * x$, the convolution sum of h and x.
(a) Give an expression for y in terms of h and x.

$$
\forall n, \quad y(n)=\sum_{m=-\infty}^{\infty} h(m) x(n-m) .
$$

(b) Let X, H, Y be the DTFT of x, h, and y, respectively. Express Y in terms of X, H.

$$
\forall \omega, \quad Y(\omega)=H(\omega) X(\omega) .
$$

(c) Suppose

$$
X(\omega)= \begin{cases}1, & |\omega| \leq \pi / 4 \\ 0, & \pi / 4<|\omega| \leq \pi\end{cases}
$$

Find the signal x.
$x=\operatorname{InverseDTFT}(X)$, i.e.

$$
\begin{aligned}
\forall n, \quad x(n) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} X(\omega) e^{i \omega n} d \omega=\frac{1}{2 \pi} \int_{-\pi / 4}^{\pi / 4} e^{i \omega n} d \omega=\left.\frac{1}{2 \pi} \frac{e^{i \omega n}}{i n}\right|_{-\pi / 4} ^{\pi / 4} \\
& =\frac{\sin \pi n / 4}{\pi n}
\end{aligned}
$$

(d) Suppose

$$
H(\omega)= \begin{cases}0, & |\omega| \leq \pi / 4 \\ 1, & \pi / 4<|\omega| \leq \pi\end{cases}
$$

Find $y=h * x$?
Since for all $\omega, Y(\omega)=H(\omega) X(\omega)=0$, therefore

$$
\forall n, \quad y(n)=0
$$

Figure 2: State machine for Problem 4
4. 20 points Construct a state machine with Inputs $=\{0,1\}$, Outputs $=\{Y e s$, No, absent $\}$, such that for any input signal, the machine outputs Y es if the most recent three input values are 111, outputs No if the most recent three input values are 000 , and in all other cases it outputs absent. In other words, if the input signal is

$$
u(0), u(1), \cdots,
$$

then the output signal

$$
y(0), y(1), \cdots,
$$

where

$$
y(n)= \begin{cases}y e s, & \text { if }(u(n-2), u(n-1), u(n))=111 \\ n o, & \text { if }(u(n-2), u(n-1), u(n))=000 \\ \text { absent }, & \text { otherwise }\end{cases}
$$

The state machine needs to remember four patterns: $0,00,1,11$. It is given by the diagram in Figure 2. Note that if no output is explicitly declared, it is absent.

