EECS 20. Solution to Midterm No. 1, October 13, 1999.

1. 20 points Fill in the blanks:
(a) If $A=\{1,2,3\}, B=\{2,3, *, \#\}$, then $A \cap B=\{2,3\}$ and $A \cup B=\{1,2,3, *, \#\}$.
(b) If the predicates P, Q, R all evaluate to false, then $[\neg P \wedge Q] \vee[\neg Q \wedge R] \vee[\neg R \wedge P]$ evaluates to false.
(c) If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$, then $g \circ f: X \rightarrow Z$.
(d) Euler's formula is $\exp i \theta=\cos (\theta)+i \sin (\theta)$.
(e) If $A \cos (\omega t+\theta)=\cos (\omega t+\pi / 4)+\cos (\omega t-\pi / 4)$, then $A=\sqrt{2}, \theta=0$.
2. 20 points Determine which of the following functions are periodic and what is their period in seconds or samples.
(a) $\quad \forall n \in$ Ints, $\quad x(n)=\cos (2 \pi n / 111)$.

Periodic, with period 111 samples.
(b) $\quad \forall n \in$ Ints, $\quad x(n)=\cos (2 \pi \sqrt{2} n)$.

Not periodic.
(c) $\quad \forall t \in$ Reals, $\quad x(t)=\cos (2 \pi \sqrt{2} t)$.

Periodic with period $1 / \sqrt{2} \mathrm{sec}$.
(d) $\quad \forall t \in$ Reals, $\quad x(t)=\exp (2 \pi 60 t+\pi / 4)$.

Periodic with period $1 / 60 \mathrm{sec}$.
3. 20 points Consider a discrete-time LTI system

$$
H:[\text { Ints } \rightarrow \text { Comps }] \rightarrow[\text { Ints } \rightarrow \text { Comps }]
$$

such that for input signal x, the output signal y is:

$$
\forall n \in \text { Ints }, \quad y(n)=x(n)+x(n-1) .
$$

(a) When the input signal x is:

$$
x(n)= \begin{cases}0, & n<0 \\ 1, & n \geq 0\end{cases}
$$

the output signal y is

$$
y(n)= \begin{cases}0, & n<0 \\ 1, & n=0 \\ 2, & n>0\end{cases}
$$

(b) Obtain an expression for the the frequency response $\hat{H}(\omega)$.

Suppose $\forall n, x(n)=e^{i \omega n}$, then

$$
\begin{aligned}
y(n) & =e^{i \omega n}+e^{i \omega(n-1)}=\left[1+e^{-i \omega}\right] e^{i \omega n} \\
& =\hat{H}(\omega) e^{i \omega n}
\end{aligned}
$$

so

$$
\hat{H}(\omega)=1+e^{-i \omega}=1+\cos (\omega)-i \sin (\omega)
$$

(c) Expressions for the magnitude response $|\hat{H}(\omega)|$ and the phase response $\angle \hat{H}(\omega)$ for $-\pi<\omega<\pi$, can be derived as follows. We have,

$$
|\hat{H}(\omega)|=\sqrt{(1+\cos (\omega))^{2}+(\sin (\omega))^{2}}=\sqrt{2+2 \cos (\omega)}
$$

and

$$
\angle \hat{H}(\omega)=-\tan ^{-} 1\left(\frac{\sin (\omega)}{1+\cos (\omega)}\right)
$$

(d) Since \hat{H} is periodic with period 2π, and since $\hat{H}(-\omega)=(\hat{H}(\omega))^{*}$, we only need to plot the frequency response for $0 \leq \omega \leq \pi$. Here are the plots. In drawing the plots we can use the following:

$$
|\hat{H}(0)|=2,|\hat{H}(\pi / 2)|=\sqrt{2},|\hat{H}(\pi)|=0
$$

and

$$
\angle \hat{H}(0)=0, \angle \hat{H}(\pi / 2)=-\pi / 4, \angle \hat{H}(\pi)=-\pi / 2 .
$$

Figure 1: Frequency response \hat{H}

Figure 2: Square wave with period 2 seconds
4. The exponential Fourier series of the square wave periodic function x depicted in the figure is of the form:

$$
\begin{equation*}
\forall t \in \text { Reals, } \quad x(t)=\sum_{k=-\infty}^{\infty} X_{k} \exp \left(i k \omega_{0} t\right) . \tag{1}
\end{equation*}
$$

(a) What is ω_{0} ? $\omega_{0}=2 \pi / 2=\pi \mathrm{rads} / \mathrm{s}$.
(b) Calculate the coefficients X_{k} in (1).

The general formula is

$$
\begin{aligned}
X_{k} & =\frac{1}{2} \int_{0}^{2} x(t) e^{-i k \omega_{0} t} d t \\
& =\frac{1}{2} \int_{0}^{2} x(t) e^{-i k \pi t} d t \\
& =\frac{1}{2}\left[\int_{0}^{1} x(t) e^{-i k \pi t} d t-\int_{1}^{2} x(t) e^{-i k \pi t} d t\right]
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{1}{2 \pi k i}\left\{\left.e^{-i k \pi t}\right|_{t=0} ^{t=1}-\left.e^{-i k \pi t}\right|_{t=1} ^{t=2}\right\} \\
& =-\frac{1}{2 \pi k i}\left\{2 e^{-i k \pi}-1-e^{-2 i k \pi}\right\}
\end{aligned}
$$

Since $e^{-i k \pi}=1$ or -1 , according as k is even or odd, whereas $e^{-2 i k \pi}=1$ for all k, this simplifies to:

$$
X_{k}= \begin{cases}\frac{2}{i k \pi}, & \text { if } k \text { is odd } \\ 0, & \text { if } k \text { is even }\end{cases}
$$

