More Practice Problems for Midterm #2, Fall 1998.

1. Consider a continuous-time LTI system H. Suppose that when the input is given by
 \[x(t) = \begin{cases} \sin(\pi t) & 0 \leq t < 1 \\ 0 & \text{otherwise} \end{cases} \]

 then the output is given by
 \[y(t) = \begin{cases} \sin(\pi t) & 0 \leq t < 1 \\ \sin(\pi(t-1)) & 1 \leq t < 2 \\ 0 & \text{otherwise} \end{cases} \]

 for all $t \in \text{Reals}$.

 a) Carefully sketch these two signals.
 b) Give an expression and a sketch for the output of the same system if the input is
 \[x'(t) = \begin{cases} \sin(\pi t) & 0 \leq t < 1 \\ -\sin(\pi(t-1)) & 1 \leq t < 2 \\ 0 & \text{otherwise} \end{cases} \]

2. Suppose you are given the following building blocks:
 - An LTI system that is an ideal continuous-time lowpass filter with frequency response
 \[H(\omega) = \begin{cases} 1 & -W < \omega < W \\ 0 & \text{otherwise} \end{cases} \]
 where W is a parameter you can set.
 - A gain block, where if the input is x then the output is given by
 \[y(t) = gx(t) \]
 for all $t \in \text{Reals}$, where again g is a parameter you can set.
 - An adder, which can add two continuous time signals.

 Use these building blocks to construct a system with the frequency response shown below:
3. Consider a continuous-time signal \(x \) with Fourier transform \(X \). Find expressions for the Fourier transform of the following signals in terms of the Fourier transform \(X \).
 a) \(y \) such that \(\forall t \in \text{Reals}, y(t) = x(at) \), for some real number \(a \).
 b) \(w \) such that \(\forall t \in \text{Reals}, w(t) = x(t)e^{j\alpha t} \), for some real number \(\alpha \).
 c) \(z \) such that \(\forall t \in \text{Reals}, z(t) = x(t)\cos(\alpha t) \), for some real number \(\alpha \).

4. Consider the FIR system described by the following block diagram:

 ![Block Diagram](image)

 Suppose that this system has frequency response \(H(\omega) \). Define a new system with the identical structure as above, except that each unit delay is replaced by a double delay (two cascaded unit delays). Find the frequency response of that system in terms of \(H(\omega) \).