Practice Problems for Final Exam Fall 1998.

1. Consider a continuous-time signal x where for all $t \in$ Reals,

$$
x(t)=\left\{\begin{array}{ll}
1 & 0 \leq t<0.5 \\
0 & \text { otherwise }
\end{array} .\right.
$$

Define Sampler $_{T}$: ContSignals \rightarrow DiscSignals in the usual way to be a sampler with sampling interval T, where if $y=\operatorname{Sampler}_{T}(x)$, then for all integers $n, y(n)=x(n T)$. Define IdealDiscToCont : DiscSignals \rightarrow ContSignals to be an ideal reconstruction system.
a) Is $x(t)$ periodic? If so, what is the period?
b) Suppose that $T=1$. Find $y=\operatorname{Sampler}_{T}(x)$.
c) Find an upper bound for T (in seconds) such that $x=$ IdealDiscToCont $\left(\operatorname{Sampler}_{T}(x)\right)$, or argue that no value of T makes this assertion true.
2. Consider an LTI discrete-time system Filter with impulse response

$$
h(n)=\delta(n)-\hat{\delta}(n-1)
$$

where δ is the Kronecker delta function.
a) Sketch $h(n)$.
b) Consider the discrete-time signal x given by $x(n)=1 \forall n \in \operatorname{Ints}$. Find $y=\operatorname{Filter}(x)$.
c) Give an expression for $H(\omega)$ that is valid for all ω, where $H=\operatorname{DTFT}(h)$.
3. Consider a continuous-time system $D:$ ContSignals \rightarrow ContSignals where if $y=D(x)$ then $\forall t \in$ Reals

$$
y(t)=x(t-1) .
$$

a) Is D linear? Justify your answer.
b) Is D time-invariant? Justify your answer.
4. Consider a continuous-time system TimeScale : ContSignals \rightarrow ContSignals where if $y=\operatorname{TimeScale}(x)$ then $\forall t \in$ Reals

$$
y(t)=x(2 t) .
$$

a) Is TimeScale linear? Justify your answer.
b) Is TimeScale time-invariant? Justify your answer.
5. Suppose that the frequency response of a discrete-time LTI system Filter is given by

$$
H(\omega)=|\sin (\omega)|
$$

where ω has units of radians/sample. Suppose the input is the discrete-time signal x given by $x(n)=1 \forall n \in$ Ints. Give a simple expression for $y=\operatorname{Filter}(x)$.
6. Consider a continuous-time periodic signal x with fundamental frequency $\omega_{0}=1$ radian/second. Recall that the Fourier series in general is written as

$$
x(t)=A_{0}+\sum_{k=1}^{\infty} A_{k} \cos \left(k \omega_{0} t+\phi_{k}\right)
$$

Suppose that for this particular example,

$$
A_{k}=\left\{\begin{array}{cc}
1 & k=0,1, \text { or } 2 \\
0 & \text { otherwise }
\end{array}\right.
$$

a) Recall that the Fourier series can be written in terms of complex exponentials as follows:

$$
x(t)=\sum_{k=-\infty}^{\infty} X_{k} e^{j k \omega_{0} t}
$$

Find the coefficients X_{k} for all $k \in$ Ints.
b) Consider a continuous-time LTI system Filter : ContSignals \rightarrow ContSignals with frequency response

$$
H(\omega)=\cos (\pi \omega / 2)
$$

Find $y=\operatorname{Filter}(x)$. I.e., give a simple expression for $y(t)$ that is valid for all $t \in$ Reals.
c) For y calculated in (b), find the fundamental frequency in radians per second. I.e., find the largest $\omega_{0}^{\prime}>0$ such that $\forall t \in$ Reals and $\forall k \in$ Ints,

$$
y(t)=y\left(t+k 2 / \omega_{0}^{\prime}\right) .
$$

