EECS20, Spring 2002 - Solutions to Final Exam

0. Typos/Corrections - Announced during exam.
-All $£$ symbols stand for the letters $f i$.
-For Problem 2, assume the system is causal.
-Problem 4 is for 20 points, not 10 points.
-In 4(c), the argument of y should be τ, not " t ".
-In $4(\mathrm{~d})$, take the input to be $x(n)=\delta(n)+2 \delta(n-2)+3 \delta(n-3)$.

1. 20 points

(a) By inspection, we obtain that $w_{0}=\pi / 2$.
$A_{1}=A_{2}=A_{6}=A_{10}=1, A_{k}=0$ otherwise.
$\phi_{k}=0$ for all k.
(b) Using the relations

$$
\begin{aligned}
X_{0} & =A_{0} \\
X_{k} & =0.5 A_{k} e^{i \phi_{k}}, \quad k=1,2, \cdots \\
X_{-k} & =X_{k}^{*}=0.5 A_{k} e^{-i \phi_{k}}, \quad k=1,2, \cdots
\end{aligned}
$$

we get

$$
X_{k}= \begin{cases}0.5, & k= \pm 1, \pm 2, \pm 6, \pm 10 \\ 0, & \text { otherwise }\end{cases}
$$

(c)

$$
\begin{aligned}
y(t) & =\sum_{k=-\infty}^{\infty} X_{k} H\left(w_{0} k\right) e^{i k w_{0} t} \\
& =X_{2} H(\pi) e^{i \pi t}+X_{-2} H(-\pi) e^{-i \pi t} \\
& =-\cos (\pi t)
\end{aligned}
$$

2. 15 points

(a)
$s(n)=\left[\begin{array}{l}y(n-1) \\ y(n-2) \\ x(n-1)\end{array}\right], \quad A=\left[\begin{array}{ccc}0 & \alpha^{2} & 2 \\ 1 & 0 & 0 \\ 0 & 0 & 0 .\end{array}\right], \quad b=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right], \quad c=\left[\begin{array}{lll}0 & -\alpha^{2} & 2\end{array}\right]$,
$d=1$.
(b) Substituting $x(n)=\delta(n)$, we can compute $y(n)$ directly from the relation

$$
\forall n \in \text { Integers }, \quad y(n)+\alpha^{2} y(n-2)=x(n)+2 x(n-1)
$$

Assuming causality, we have that $y(n)=0$ for $n<0$. We then obtain $y(0)=1$, $y(1)=2$, $y(2)=\alpha^{2}$, $y(3)=-2 \alpha^{2}$, $y(4)=\alpha^{4}$, $y(5)=2 \alpha^{4}$, $y(6)=-\alpha^{6}$, $y(7)=-2 \alpha^{6}$.
A generic expression is

$$
y(n)= \begin{cases}(-1)^{n / 2} \alpha^{n}, & \text { if } \mathrm{n} \text { is even, } n / \text { ge } 0 \\ (-1)^{(n-1) / 2} 2 \alpha^{n-1}, & \text { if } \mathrm{n} \text { is odd, } n / \text { ge } 0 \\ 0, & n<0\end{cases}
$$

(c) The system is stable for $|\alpha|<1$.
3. $\mathbf{1 5}$ points The following state machine implements CodeRecognizer.

4. 20 points

(a) $X(\omega)=X(\omega+2 \pi)$. Hence, $p=2 \pi$ and $\omega_{0}=2 \pi / p=1$.
(b) $X(\omega)=\sum_{n=-\infty}^{\infty} x(n) e^{-i \omega n}=\sum_{n=-\infty}^{\infty} x(-n) e^{i \omega n}$. By inspection, we obtain $\tilde{X}_{n}=x(-n)$.
(c) $y(\tau)$ is the CTFT of $X(\omega)$. The inverse-CTFT relationship is

$$
X(\omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} y(\tau) e^{i \tau \omega} d \tau
$$

We also have that

$$
X(\omega)=\sum_{n=-\infty}^{\infty} x(-n) e^{i n \omega}
$$

The two expressions for $X(\omega)$ can be equal if and only if

$$
y(\tau)=2 \pi \sum_{n=-\infty}^{\infty} x(-n) \delta(n-\tau)
$$

(d) When $x(n)=\delta(n)+2 \delta(n-2)+3 \delta(n-3), y(\tau)=2 \pi \delta(\tau)+4 \pi \delta(\tau+$ $2)+6 \pi \delta(\tau+3)$. Hence, the plot of $y(\tau)$ consists of three spikes of amplitudes $2 \pi, 4 \pi$ and 6π, at $\tau=0, \tau=-2$ and $\tau=-3$, respectively.

5. 10 points

(a) Using the relationship $H(\omega)=\sum h(n) e^{i \omega n}$, we obtain that

$$
\begin{aligned}
& H_{1}(\omega)=1+e^{i \omega}+e^{i \omega 2}+e^{i \omega 3}+e^{i \omega 4} \\
& H_{2}(\omega)=1-e^{i \omega}+e^{i \omega 2}-e^{i \omega 3}+e^{i \omega 4}
\end{aligned}
$$

(b) From part (a), and using the fact that $e^{i \pi}=-1$, we see that $H_{1}(\omega)=$ $H_{2}(\omega+\pi)$. So $\phi=\pi$ works. In fact, ϕ can be chosen to be any odd, integer multiple of π.

6. 10 points

(a) (4 pts) Yes, the feedback composition has a unique non-stuttering input for all reachable states.
(b) (6 pts) Yes. The following is a state transition diagram for the composite machine:

7. 10 points

(a) L, NC
(b) TI, C
(c) L, NC

