EECS20, Spring 2002 – Solutions to Final Exam

0. Typos/Corrections - Announced during exam.

-All £ symbols stand for the letters f i.

-For Problem 2, assume the system is causal.

-Problem 4 is for 20 points, not 10 points.

-In 4(c), the argument of y should be τ , not "t".

-In 4(d), take the input to be $x(n) = \delta(n) + 2\delta(n-2) + 3\delta(n-3)$.

1. 20 points

(a) By inspection, we obtain that $w_0 = \pi/2$.

 $A_1 = A_2 = A_6 = A_{10} = 1$, $A_k = 0$ otherwise.

 $\phi_k = 0$ for all k.

(b) Using the relations

$$X_{0} = A_{0},$$

$$X_{k} = 0.5A_{k}e^{i\phi_{k}}, \quad k = 1, 2, \cdots$$

$$X_{-k} = X_{k}^{*} = 0.5A_{k}e^{-i\phi_{k}}, \quad k = 1, 2, \cdots$$

we get

$$X_{k} = \begin{cases} 0.5, & k = \pm 1, \pm 2, \pm 6, \pm 10 \\ 0, & \text{otherwise} \end{cases}$$

(c)

$$y(t) = \sum_{k=-\infty}^{\infty} X_k H(w_0 k) e^{ikw_0 t}$$

= $X_2 H(\pi) e^{i\pi t} + X_{-2} H(-\pi) e^{-i\pi t}$
= $-\cos(\pi t).$

2. 15 points

(a)

$$s(n) = \begin{bmatrix} y(n-1) \\ y(n-2) \\ x(n-1) \end{bmatrix}, \quad A = \begin{bmatrix} 0 & \alpha^2 & 2 \\ 1 & 0 & 0 \\ 0 & 0 & 0. \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \quad c = \begin{bmatrix} 0 & -\alpha^2 & 2 \end{bmatrix},$$
$$d = 1.$$

(b) Substituting $\boldsymbol{x}(n) = \boldsymbol{\delta}(n),$ we can compute $\boldsymbol{y}(n)$ directly from the relation

$$\forall n \in Integers, \ y(n) + \alpha^2 y(n-2) = x(n) + 2 \ x(n-1).$$

Assuming causality, we have that y(n) = 0 for n < 0. We then obtain

$$y(0) = 1,$$

$$y(1) = 2,$$

$$y(2) = \alpha^{2},$$

$$y(3) = -2\alpha^{2},$$

$$y(4) = \alpha^{4},$$

$$y(5) = 2\alpha^{4},$$

$$y(6) = -\alpha^{6},$$

$$y(7) = -2\alpha^{6}.$$

A generic expression is

$$y(n) = \begin{cases} (-1)^{n/2} \alpha^n, & \text{if n is even, } n/ge0 \\ (-1)^{(n-1)/2} 2\alpha^{n-1}, & \text{if n is odd, } n/ge0 \\ 0, & n < 0 \end{cases}$$

(c) The system is stable for $|\alpha| < 1$.

4. 20 points

(a) $X(\omega) = X(\omega + 2\pi)$. Hence, $p = 2\pi$ and $\omega_0 = 2\pi/p = 1$.

(b) $X(\omega) = \sum_{n=-\infty}^{\infty} x(n)e^{-i\omega n} = \sum_{n=-\infty}^{\infty} x(-n)e^{i\omega n}$. By inspection, we obtain $\tilde{X}_n = x(-n)$.

(c) $y(\tau)$ is the CTFT of $X(\omega)$. The inverse-CTFT relationship is

$$X(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} y(\tau) e^{i\tau\omega} d\tau.$$

We also have that

$$X(\omega) = \sum_{n=-\infty}^{\infty} x(-n)e^{in\omega}.$$

The two expressions for $X(\omega)$ can be equal if and only if

$$y(\tau) = 2\pi \sum_{n=-\infty}^{\infty} x(-n)\delta(n-\tau).$$

(d) When $x(n) = \delta(n) + 2\delta(n-2) + 3\delta(n-3)$, $y(\tau) = 2\pi\delta(\tau) + 4\pi\delta(\tau + 2) + 6\pi\delta(\tau+3)$. Hence, the plot of $y(\tau)$ consists of three spikes of amplitudes 2π , 4π and 6π , at $\tau = 0$, $\tau = -2$ and $\tau = -3$, respectively.

5. 10 points

(a) Using the relationship $H(\omega) = \sum h(n)e^{i\omega n}$, we obtain that

$$H_1(\omega) = 1 + e^{i\omega} + e^{i\omega^2} + e^{i\omega^3} + e^{i\omega^4},$$
$$H_2(\omega) = 1 - e^{i\omega} + e^{i\omega^2} - e^{i\omega^3} + e^{i\omega^4}.$$

(b) From part (a), and using the fact that $e^{i\pi} = -1$, we see that $H_1(\omega) = H_2(\omega + \pi)$. So $\phi = \pi$ works. In fact, ϕ can be chosen to be any odd, integer multiple of π .

6. 10 points

(a) (4 pts) Yes, the feedback composition has a unique non-stuttering input for all reachable states.

(b) (6 pts) Yes. The following is a state transition diagram for the composite machine:

7. 10 points

- (a) L, NC
- (b) TI, C
- (c) L, NC