EECS 20. Midterm No. 2
April 16, 2002.
Please use these sheets for your answer and your work. Use the backs if necessary. Write clearly and put a box around your answer, and show your work.

Print your name and lab TA's name below

Name:
Lab TA:

Problem 1:
Problem 2:
Problem 3:
Problem 4:
Total:

1. $\mathbf{3 0}$ points. Consider a continuous-time signal $x:$ Reals \rightarrow Reals defined by

$$
\forall t \in \text { Reals, } x(t)=3+2 \sin (3 t)+3 \cos (4 t) .
$$

(a) Obtain the Fourier series coefficients of $x(t)$, i.e., find the coefficients $A_{0}, A_{1}, A_{2}, \ldots$ and $\phi_{1}, \phi_{2}, \ldots$ and w_{0} such that

$$
x(t)=A_{0}+\sum_{k=1}^{\infty} A_{k} \cos \left(k w_{0} t+\phi_{k}\right) .
$$

(b) Obtain the Fourier series expansion for $x(t)$, i.e., find the coefficients X_{k} for all $k \in$ Integers such that

$$
x(t)=\sum_{k=-\infty}^{\infty} X_{k} e^{i k w_{0} t}
$$

(c) Consider a continuous-time LTI system Filter : [Reals \rightarrow Reals $] \rightarrow[$ Reals \rightarrow Reals] with the following frequency response:

$$
\begin{aligned}
& H(w)=2, \quad|w| \geq 2 \\
& H(w)=0, \quad|w|<2
\end{aligned}
$$

Such a filter is an amplifying high-pass filter. Give a simple expression for the output $y(t)$ of the system, where $y=\operatorname{Filter}(x)$.
2. $\mathbf{2 0}$ points. Consider a system whose input and output are related by

$$
\forall n \in \text { Integers }, y(n)=2 x(n-2)+1.1 y(n-1) .
$$

(a) Construct a state-space model for the system. It is sufficient to give the state definition, the A matrix, vectors b and c, and scalar d.
(b) Give an expression for the zero-state impulse response.
(c) Recall that a system is stable if a bounded input always produces a bounded output. Is this system stable? Explain.
3. 25 points. Consider discrete-time systems with input $x:$ Integers \rightarrow Reals and output $y:$ Integers \rightarrow Reals. Each of the following defines such a system. For each of the following, indicate whether it is linear only (L), time-invariant only (TI), both (LTI), or neither (N). Note that no partial credit will be given for these questions.
(a) $\forall n \in$ Integers, $y(n)=x^{3}(n-10)=(x(n-10))^{3}$
(b) $\forall n \in$ Integers, $y(n)=\cos (x(n))$
(c) $\forall n \in$ Integers, $y(n)=n$
(d) $\forall n \in$ Integers, $y(n)=\max \{|x(n)|,|x(n-1)|\}$
(e) $\forall n \in$ Integers, $y(n)=x(-n)$
4. $\mathbf{1 5}$ points. Consider a continuous-time LTI system S. Suppose that when the input is given by

$$
x(t)=\left\{\begin{array}{cl}
\sin (\pi t) & 0 \leq t<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

then the output $y=S(x)$ is given by

$$
y(t)= \begin{cases}\sin (\pi t) & 0 \leq t<1 \\ \sin (\pi(t-2)) & 2 \leq t<3 \\ 0 & \text { otherwise }\end{cases}
$$

for all $t \in$ Reals.
(a) Carefully sketch these two signals.
(b) Give a simple expression and a sketch for the output of the same system if the input is

$$
x(t)=\left\{\begin{array}{lc}
\sin (\pi t) & 0 \leq t<1 \\
-\sin (\pi(t-1)) & 1 \leq t<2 \\
0 & \text { otherwise }
\end{array} .\right.
$$

Use this page for overflow

