EECS20, Spring 2002 - Solutions to Midterm 2

1. 30 points

(a) By inspection, we obtain that $w_{0}=1, A_{0}=3, A_{3}=2, A_{4}=3$, $\phi_{3}=-\pi / 2$. All other A_{k} and ϕ_{k} are equal to zero.
(b) Using the relations

$$
\begin{aligned}
X_{0} & =A_{0} \\
X_{k} & =0.5 A_{k} e^{i \phi_{k}}, \quad k=1,2, \cdots \\
X_{-k} & =X_{k}{ }^{*}=0.5 A_{k} e^{-i \phi_{k}}, \quad k=1,2, \cdots
\end{aligned}
$$

we get

$$
X_{k}= \begin{cases}3, & k=0 \\ -i, & k=3 \\ i, & k=-3 \\ 1.5, & k=-4,4 \\ 0, & \text { otherwise }\end{cases}
$$

(c)

$$
\begin{aligned}
y(t) & =\sum_{k=-\infty}^{\infty} X_{k} H\left(w_{0} k\right) e^{i k w_{0} t} \\
& =X_{0} H(0)+X_{3} H(3) e^{i 3 t}+X_{-3} H(-3) e^{-i 3 t}+X_{4} H(4) e^{i 4 t}+X_{-4} H(-4) e^{-i 4 t} \\
& =4 \sin (3 t)+6 \cos (4 t)
\end{aligned}
$$

2. $\mathbf{2 0}$ points

(a)
$s(n)=\left[\begin{array}{l}x(n-1) \\ x(n-2) \\ y(n-1)\end{array}\right], \quad A=\left[\begin{array}{ccc}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 2 & 1.1\end{array}\right], \quad b=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \quad c=\left[\begin{array}{lll}0 & 2 & 1.1\end{array}\right], \quad d=0$.
(b) Given that $x(n)=\delta(n)$, we can compute $y(n)$ directly from the relation $y(n)=2 x(n-2)+1.1 y(n-1)$. We get

$$
y(n)= \begin{cases}2(1.1)^{n-2}, & n \geq 2 \\ 0, & \text { otherwise }\end{cases}
$$

(c) No, this system is not stable. From part (b) above, we see that for one particular input $(x(n)=\delta(n)$), the output $y(n) \rightarrow \infty$ as $n \rightarrow \infty$.

3. 20 points

(a) TI
(b) TI
(c) N
(d) TI
(e) L

4. 15 points

The new input (call it $x_{2}(t)$) can be expressed in terms of the old input (call it $\left.x_{1}(t)\right)$ as $x_{2}(t)=x_{1}(t)-x_{1}(t-1)$. Using the linearity and time-invariance properties, we obtain that $y_{2}(t)=y_{1}(t)-y_{1}(t-1)$, which can be simplified to

$$
y_{2}(t)= \begin{cases}\sin (\pi t), & 0 \leq t<4 \\ 0, & \text { otherwise }\end{cases}
$$

