EECS 20. Final Exam
 May 17, 2004.

Please use these sheets for your answer. Write clearly and show your work on the sheets in the back. Please check that you have 10 numbered pages.
Print your name and lab time below
Name:
Lab time:
Problem 1 (10):
Problem 2 (15):
Problem 3 (10):
Problem 4 (15):
Problem 5 (15):
Problem 6 (15):
Problem 7 (20):
Total:

1. 10 points A state machine has the same input and output alphabet, $\{0,1, a b s e n t\}$.
(a) $\mathbf{3}$ points Its inputs signals are:
InputSignals =

Its output signals are:
OutputSignals $=$
(b) 7 points For any input signal x, the output signal y satisfies $y(n)=0$ if $(x(0), \ldots, x(n))$ contains an equal number of 0 's and 1 's; and $y(n)=1$, otherwise. Design a state machine (give its diagram and indicate the initial state) that has this input-ouput relationship.
2. $\mathbf{1 5}$ points Consider the linear difference equation,

$$
\begin{equation*}
y(n)=x(n-2)+x(n-1)+x(n), \quad n \geq 0 \tag{1}
\end{equation*}
$$

(a) 5 points Give a $\left[A, b, c^{T}, d\right]$ representation of a state machine that satisfies this inputoutput relationship. What is the state $s(n)$ of your state machine in terms of x, y ?

$$
s(n)=
$$

(b) $\mathbf{3}$ points What is the zero-state impulse response of this system?
(c) 4 points What is $y(n), n \geq 0$, if $x(-1)=x(-2)=0$ and $x(n)=1, n \geq 0$?
(d) 3 points Design a tapped-delay line (give its signal flow graph) that implements (1).
3. $\mathbf{1 0}$ points The figure below is an incomplete description of a controller. When someone presses the open button, the output is turned on and 15 sec later it is turned off. If the open button is pressed before the output is off the output stays on for 15 sec beyond the last time the open button was pressed. If someone presses close while the output is on, it is immediately turned off.

(a) 7 points Design the guards, actions, and outputs for the transitions so as to meet this specification. Two modes are available, as shown in the diagram. However, you may use only one mode.
(b) $\mathbf{3}$ points Sketch the output signal y when the input signal x is as shown. Mark all time instances t when y changes value.
4. 15 points A linear system with input x and output y is described by the second-order differential equation

$$
\ddot{y}(t)+2 \dot{y}(t)+y(t)=x(t) .
$$

(a) $\mathbf{8}$ points Find the frequency response H of this system. Give simple expressions for the magnitude and phase responses: $\forall \omega$,

$$
\begin{aligned}
H(\omega) & = \\
|H(\omega)| & = \\
\angle H(\omega) & =
\end{aligned}
$$

(b) 7 points Sketch the magnitude and phase response below. Carefully mark the values for $\omega=0, \pm 1, \pm \infty$.

5. 15 points Evaluate the convolution integral $y_{i}=h_{i} * x$ when $x: R \rightarrow R$ is the unit step, $x(t)=0, t<0 ;=1, t \geq 0$, and $h_{i}: R \rightarrow R$ is as given below, $i=1,2,3$.
(a) 5 points $h_{1}(t)=0, t<0 ;=e^{-t}, t \geq 0$.
(b) 5 points $h_{2}(t)=e^{t}, t<0 ;=0, t \geq 0$.
(c) 5 points $h_{3}(t)=e^{t}, t<0 ;=e^{-t}, t \geq 0$.
6. 15 points This problem concerns the various Fourier transforms.
(a) 3 points The exponential Fourier series of the signal x,

$$
\forall t \in R, \quad x(t)=\cos (2 \pi t)+\sin (3 \pi t),
$$

is
(b) $\mathbf{5}$ points The Fourier transform of the signal z,

$$
\forall t \in R, \quad z(t)=e^{-t}, t \geq 0 ;=0, t<0,
$$

is
and the Fourier transform of the signal y,

$$
\forall t \in R, \quad y(t)=z(t) e^{i \omega_{0} t}
$$

(in which z is as above) is
(c) 7 points Suppose the DTFT X of a signal $x:$ Ints \rightarrow Complex is as shown below.

i. Prove that the signal x is real-valued.
ii. Suppose the signal y is constructed by: $y(k)=x(k / 2)$, if k is even; and $y(k)=0$, if k is odd. What is the DTFT Y of y in terms of X, and sketch Y above.
7. 20 points In the figure on the next page, the left column shows three time signals, $x, p, y \in$ ContSignals.
(a) $\mathbf{5}$ points Write down expressions for the corresponsing Fourier Transforms X, P, Y.

$$
\begin{aligned}
& X(\omega)= \\
& P(\omega)= \\
& Y(\omega)=
\end{aligned}
$$

(b) $\mathbf{5}$ points Plot these Fourier Transforms in the column on the right. Mark the values at $\omega=0$. Also, on the ω-axis, indicate the frequencies where the Fourier Transform is not zero.
(c) $\mathbf{5}$ points Suppose the signal y is sampled every 0.01 s , i.e. the sampling frequency is 100 Hz . The sampled signal is called $z \in$ DiscSignals. Write down an expression for the DTFT Z of z in terms of Y.

$$
Z(\omega)=
$$

(d) $\mathbf{5}$ points Sketch a plot of Z in the figure.

$$
y(t)=x(t) p(t)
$$

$$
z(k)=y(0.01 k)
$$

This page is for work

