EECS 20. Midterm No. 2 Solution April 9, 2004.

1. 20 points The block diagram of a feedback composition of a discrete-time system is given below:

The state s, input signal x and output signal y are related by the update equation:

$$
\begin{aligned}
s(n+1) & =s(n)+x(n) \\
y(n) & =s(n)
\end{aligned}
$$

(a) 6 points Find the zero-state impulse response of this system.

Anwser The impulse response is

$$
\forall n \geq 0, h(n)= \begin{cases}0, & n=0 \\ 1, & n \geq 1\end{cases}
$$

(b) $\mathbf{6}$ points Find the update equation for the feedback system with input signal r, output signal y and state s.
Answer We have $x(n)=r(n)+k y(n)=x(n)+k s(n)$. So the update equation is:

$$
\begin{aligned}
s(n+1) & =[1+k] s(n)+r(n) \\
y(n) & =s(n)
\end{aligned}
$$

(c) $\mathbf{8}$ points Find the zero-state impulse response for the feedbac composition, when the 'gain' $k=-0.5$.
Answer The zero-state impulse response for the feedback composition is

$$
\forall n \geq 0, h(n)= \begin{cases}0, & n=0 \\ (1+k)^{n-1}=(0.5)^{n-1}, & n \geq 1\end{cases}
$$

2. 20 points The figure below is a partial hybrid system description of the dome light controller of an automobile.

When someone opens the door $(u(t)=$ open $)$, the light is turned on $(v(t)=o n)$. After the door is closed $(u(t)=$ close $)$ for 30 seconds, the light is turned off $(v(t)=o f f)$. Note that the door must be closed for the entire 30 seconds, before the light is turned off.
(a) $\mathbf{1 0}$ points Design the transitions (including guard, action, and output) so that the system meets this specification.
(b) $\mathbf{1 0}$ points Plot the output signal $v(t)$ and the trajectory of the refinement state $s(t)$, $0 \leq t \leq 60$, when the input signal is as shown below.

3. 15 points The continuous-time signal x is given by (t is in seconds)

$$
\forall t \in R, \quad x(t)=\cos (2 \pi \times 60+\pi / 4)+2 \cos (2 \pi \times 120+\pi / 8)+3 \cos (2 \pi \times 180+\pi / 12)
$$

(a) $\mathbf{5}$ points Is x periodic? If it is, what is its period?

Answer Yes, it is periodic. The period is $1 / 60 \mathrm{sec}$.
(b) $\mathbf{1 0}$ points The signal x is input to a LTI system whose frequency response is

$$
\forall \omega \in R, \quad H(\omega)= \begin{cases}1, & |\omega|<2 \pi \times 150 \\ 0.5, & \text { otherwise }\end{cases}
$$

What is the output signal y ? Is y periodic? If it is, what is its period?
Answer The output signal is

$$
\forall t, \quad y(t)=\cos (2 \pi \times 60+\pi / 4)+2 \cos (2 \pi \times 120+\pi / 8)+1.5 \cos (2 \pi \times 180+\pi / 12)
$$

Yes, y is periodic. The period is $1 / 60 \mathrm{sec}$.
4. 25 points A LTI system with input signal x and output signal y is described by the differential equation

$$
\frac{d y}{d t}+0.5 y(t)=x(t), \quad t \in R .
$$

(a) $\mathbf{1 0}$ points Suppose the input signal is $\forall t, x(t)=e^{i \omega t}$, where ω is fixed. What is the output signal y ?
Answer The output signal is $\forall t, y(t)=H(\omega) e^{i \omega t}$. Substitution into the differential equation gives

$$
i \omega H(\omega) e^{i \omega t}+0.5 H(\omega) e^{i \omega t}=e^{i \omega t}
$$

so

$$
H(\omega)=\frac{1}{0.5+i \omega} .
$$

Hence

$$
\forall t, \quad y(t)=\frac{1}{0.5+i \omega} e^{i \omega t}
$$

(b) $\mathbf{5}$ points What is the frequency response,

$$
\forall \omega \in R, \quad H(\omega)=
$$

Answer

$$
H(\omega)=\frac{1}{0.5+i \omega} \text {. }
$$

(c) $\mathbf{1 0}$ points What is the magnitude and phase of the frequency response for $\omega=0.5$ $\mathrm{rad} / \mathrm{sec}$?

$$
\begin{aligned}
& |H(0.5)|= \\
& \angle H(0.5)=
\end{aligned}
$$

Answer

$$
\begin{aligned}
& |H(0.5)|=\left|\frac{1}{0.5+i 0.5}\right|=\sqrt{2} \\
& \angle H(0.5)=-\frac{\pi}{4}
\end{aligned}
$$

5. 20 points

(a) $\mathbf{1 0}$ points Consider a continuous-time system $S:[R \rightarrow R] \rightarrow[R \rightarrow R]$
i. Suppose

$$
\forall x, \forall t, \quad S(x)(t)=x(t-2) .
$$

Is S time-invariant? Why?
Answer Yes, because the system is $S=D_{2}$ (delay by 2), so for all $T, D_{2} \circ D_{T}=$ $D_{2+T}=D_{T+2}=D_{T} \circ D_{2}$, and the system is time-invariant.
ii. Suppose

$$
\forall x, \forall t, \quad S(x)(t)=x(2 t) .
$$

Is S time-invariant? Why?
Answer No, because consider the signal $\forall t, x(t)=t$. Then $y(t)=S(x)(t)=2 t$, so

$$
D_{T} \circ S(x)(t)=D_{T}(y)(t)=2(t-T) .
$$

And $z(t)=D_{T}(x)(t)=t-T$, so

$$
S \circ D_{T}(x)(t)=S(z)(t)=z(2 t)=2 t-T .
$$

So $D_{T} \circ S \neq S \circ D_{T}$.
(b) A discrete-time linear system produces output v when the input is the step u. What is the output h when the input is the impulse δ ?

