EECS20n, Quiz 1, 1/30/04, Solution

Indicate whether the following statements are true or false. There will be no partial credit, so please consider your answer carefully. Put a box around your answer.

The solution below also gives a proof.

1. The sets $\{0,1,2, \cdots\}$ and $\{1,2,3, \cdots\}$ have the same cardinality. True

The function f given by $\forall n, f(n)=n+1$ is one-to-one and onto.
2. The sets $\{0,1,2, \cdots\}$ and $[0,1]$ have the same cardinality. False See p. 613 of text.
3. $\exists y \in$ Reals $\forall x \in$ Reals $y<x$. False

Take $x=y+1$.
4. $\forall x \in$ Reals $\exists y \in$ Reals $y<x$. True

Take $y=x-1$.
5. Consider the function x where $\forall t \in$ Reals, $x(t)=2$. Then $x \in[$ Reals \rightarrow Reals $]$. True
$[$ Reals \rightarrow Reals $]$ is the space of ALL functions with domain Reals and range Reals. x is such a function.
6. Let $f:$ Reals \rightarrow Reals and g : Reals \rightarrow Reals. Define the functions $f+g$ by $\forall x \in$ Reals, $(f+$ $g)(x)=f(x)+g(x)$, and $g \circ f$ by $\forall x \in$ Reals, $(g \circ f)(x)=f(g(x))$. Then

$$
\begin{aligned}
f+g & =g+f \quad \text { True } \\
f \circ g & =g \circ f \quad \text { False }
\end{aligned}
$$

$$
\forall x,(f+g)(x)=f(x)+g(x)=g(x)+f(x)=(g+f)(x) .
$$

Define f, g by $\forall x, f(x)=1, \quad g(x)=2$. Then $\forall x,(f \circ g)(x)=1, \quad(g \circ f)(x)=2$.
7. There is a function $f:\{1,2\} \rightarrow\{a, b\}$ with $\operatorname{graph}(f)=\{(1, a),(2, a)\}$. True The function is given by: $f(1)=f(2)=a$.
8. Let $f: X \rightarrow Y$. Then $\operatorname{graph}(f) \subset X \times Y$. True
$\operatorname{graph}(f)=\{(x, y) \mid x \in X, y=f(x)\} \subset X \times Y$.
9. Let $G \subset X \times Y$. There exists a function f such that $\operatorname{graph}(f)=G$. False Take $X=\{1,2\}, Y=\{a, b\}, G=\{(1, a)\}$.

