EECS20n, Quiz 4, 03/19/04, Solution

1. $\mathbf{1 0}$ points Two linear systems are combined in a cascade composition as shown below:

The two systems, indexed $i=1,2$, are 1 -dimensional with scalar input x_{i}, scalar output y_{i}, initial state $s_{i}(0)$ and update equations:

$$
\begin{aligned}
s_{i}(n+1) & =a_{i} s_{i}(n)+b_{i} x_{i}(n) \\
y_{i}(n) & =c_{i} s_{i}(n)+d_{i} x_{i}(n)
\end{aligned}
$$

The cascade composition means that $x_{2}=y_{1}$. Write down the state, initial state, and update equations for the composite system.
Answer Observe that for all n

$$
\begin{equation*}
x_{2}(n)=y_{1}(n)=c_{1} s_{1}(n)+d_{1} x_{1}(n) . \tag{1}
\end{equation*}
$$

So using (1) twice,

$$
\begin{aligned}
s_{2}(n+1) & =a_{2} s_{2}(n)+b_{2} x_{2}(n)=a_{2} s_{2}(n)+b_{2} c_{1} s_{1}(n)+b_{2} d_{1} x_{1}(n) \\
y_{2}(n) & =c_{2} s_{2}(n)+d_{2} x_{2}(n)=c_{2} s_{2}(n)+d_{2} c_{1} s_{1}(n)+d_{2} d_{1} x_{1}(n)
\end{aligned}
$$

Hence the update equation for the composite system is

$$
\begin{aligned}
{\left[\begin{array}{l}
s_{1}(n+1) \\
s_{2}(n+1)
\end{array}\right] } & =\left[\begin{array}{ll}
a_{1} & 0 \\
b_{2} c_{1} & a_{2}
\end{array}\right]\left[\begin{array}{l}
s_{1}(n) \\
s_{2}(n)
\end{array}\right]+\left[\begin{array}{l}
b_{1} \\
b_{2} d_{1}
\end{array}\right] x_{1}(n) \\
y_{2}(n) & =\left[\begin{array}{ll}
d_{2} c_{1} & c_{2}
\end{array}\right]\left[\begin{array}{l}
s_{1}(n) \\
s_{2}(n)
\end{array}\right]+\left[d_{2} d_{1}\right] x_{1}(n)
\end{aligned}
$$

Hence the state is $s(n)=\left[s_{1}(n), s_{2}(n)\right]^{T} \in R^{2}$; initial state is $s(0)=\left[s_{1}(0), s_{2}(0)\right]^{T}$; update equation is as above.
2. 10 points A 1 -dimensional system with scalar input x, scalar output y, state s, is put in feedback composition with input r and output y as shown below:

What are the state and the update equations for the feedback composition?
Answer The 'inner' system has update equation

$$
\begin{align*}
s(n+1) & =a s(n)+b x(n) \tag{2}\\
y(n) & =c s(n)+d x(n) \tag{3}
\end{align*}
$$

The composite system has input $r(n)$ at time n. From (3),

$$
x(n)=r(n)+k y(n)=r(n)+k[c s(n)+d x(n)]
$$

which gives

$$
\begin{align*}
x(n) & =\frac{1}{1-d k} r(n)+\frac{k c}{1-d k} s(n) \\
y(n) & =c s(n)+\frac{d k c}{1-d k} s(n)+\frac{d}{1-d k} r(n) \\
& =\left[c+\frac{d k c}{1-d k}\right] s(n)+\frac{d}{1-d k} r(n) \tag{4}
\end{align*}
$$

Hence the composite system's update equation is:

$$
\begin{aligned}
s(n+1) & =\left[a+\frac{b k c}{1-d k}\right] s(n)+\left[\frac{b}{1-d k}\right] r(n) \\
y(n) & =\left[c+\frac{d k c}{1-d k}\right] s(n)+\left[\frac{d}{1-d k}\right] r(n)
\end{aligned}
$$

For the composition to be well-formed we must have $1-d k \neq 0$. The state of the composition at time n is $s(n)$; its initial state is $s(0)$.

