EECS20n, Quiz 8, 05/07/04

Last Name \qquad First \qquad Lab time \qquad
Let the continuous-time signal c given by

$$
\forall t \in \text { Reals }, \quad c(t)=2 \cos \left(\omega_{c} t\right)
$$

be a carrier wave for a radio signal. Let x given by

$$
\forall t \in \text { Reals }, \quad x(t)=2 \cos \left(\omega_{x} t\right)
$$

be the signal to be carried by that radio signal (that it, it is a highly simplified stand-in for, say, a voice signal). To be concrete, let $\omega_{c}=2 \pi \cdot 8000$ radians/second, and $\omega_{x}=2 \pi \cdot 400 \mathrm{radians} / \mathrm{second}$.

1. Find and sketch the CTFT Y of y where

$$
\forall t \in \text { Reals }, \quad y(t)=c(t) x(t) .
$$

Label your sketch carefully. Hint: The CTFT of $e^{i \omega_{0} t}$ is $2 \pi \delta\left(\omega-\omega_{0}\right)$.
2. Let y from part 1 be the input to an LTI system with frequency response H where

$$
\forall \omega \in \text { Reals, } \quad H(\omega)= \begin{cases}0 & \text { if } \omega \leq 0 \\ 1 & \text { if } \omega>0\end{cases}
$$

Find the output u as a function of t.

