Stability and Z Transforms

Last time we
- Explored sampling and reconstruction of signals
- Saw examples of the phenomenon known as aliasing
- Found the sampling rate needed for accurate reconstruction
- Learned about the Nyquist-Shannon Sampling theorem
- Described different types of reconstruction

Today (and next time) we will
- Look at systems with impulse responses lacking a well-defined Fourier transform (unstable)
- Develop tools to analyze whether a system is stable: Z transform (for discrete-time systems) and Laplace transform (for continuous-time systems)
- Draw connections between these new transforms and Fourier transforms

Example: Unstable System

Recall our “bank account” system, defined by

\[y(n) = (1+r) y(n-1) + x(n) \]

where \(r \) is the interest rate (hopefully positive!)

The impulse response of this system is

\[h(n) = (1+r)^n \]

Recall that we said this system is **unstable**.

For a bounded input like the Kronecker delta function, we can get an output that grows without bound.

We want to be able to tell whether a system is bounded-input bounded-output **stable**. That is, we want to determine whether a bounded input can lead to an unbounded output.
Example: Unstable System

If we try to find the frequency response of the bank account system using the DTFT,

\[H(\omega) = \sum_{n=-\infty}^{\infty} h(n) e^{-i\omega n} = \sum_{n=-\infty}^{\infty} (1 + r)^n e^{-i\omega n} \]

we see that the infinite sum will not converge if \(r > 0 \).

If we try to find the frequency response using the formula we developed for difference equations, we get

\[H(\omega) = \frac{1}{1 - (1 + r)e^{-i\omega}} \]

This should make us wonder about the validity of this formula.

Another Example: Unstable System

Consider a helicopter. We can model the helicopter as a horizontal arm with moment of inertia \(M \), which can rotate about the main shaft.

Let \(y \) be the rotational acceleration of the helicopter body, and let \(x \) be the torque applied to the helicopter. (The torque actually comes from the torque created by the main rotor minus the counteracting torque from the tail rotor.)
Another Example: Unstable System

The motion is given by the differential equation

\[\frac{dy}{dt}(t) = \frac{x(t)}{M} \]

with solution (assuming zero initial condition)

\[y(t) = \frac{1}{M} \int_{\tau=0}^{t} x(\tau) \, d\tau \]

We can see that if \(x(t) \) is some finite nonzero constant, the output \(y(t) \) grows without bound as \(t \) increases.

Hence, the system is unstable.

Analyzing Stability: Discrete-Time

We now come up with ways of analyzing whether a system is stable. We want to know this, before we blindly use formulas and think we know the frequency response.

For a discrete-time LTI system, we say the system is stable if and only if its impulse response is absolutely summable. Absolutely summable means that the sum

\[\sum_{n=-\infty}^{\infty} |h(n)| \]

exists and is finite.

This condition guarantees that the DTFT of \(h \) will exist.

Note that a system can be IIR and also be stable.
Analyzing Stability: Continuous-Time

For continuous-time LTI systems, the system is **stable** if and only if the impulse response is absolutely integrable. Absolutely integrable means

\[\int_{-\infty}^{\infty} |h(t)| \, dt \]

exists and is finite.

In addition to this condition, the impulse response must have a finite number of local maxima/minima and a finite number of discontinuities on any finite interval, but real-life systems generally satisfy this so we don’t talk about these conditions. The Fourier transform of h exists if h is absolutely integrable. Again, the system can be IIR and still be stable.

Determining Stability Using Z Transform

We can test whether a system is stable, and get some measure of how “close” it is to stability or instability, using the **Z transform**.

Consider a system whose impulse response is not absolutely summable. Maybe if we scale down the terms, say let

\[h_r(n) = h(n) \, r^{-n} \]

the new system \(h_r \) might be absolutely summable. The **Z transform** of a signal does just this. It is defined by:

\[\hat{X}(z) = \sum_{n=-\infty}^{\infty} x(n) \, z^{-n} \]

Notice that it looks just like the DTFT, with \(z = e^{j\omega} \).
Region of Convergence of Z Transform

For a given signal x, the Z transform

$$\hat{X}(z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n}$$

might not converge for all values of z. We define the region of convergence (RoC) as the set of complex numbers z where the above does converge:

$$\text{RoC}(x) = \{z \in \text{Complex} | x(n)|z|^{-n} \text{ is absolutely summable}\}$$

Z Transform of Impulse Response

The Z transform can tell us about the stability of a discrete-time LTI system, when we apply it to the impulse response. The Z transform of the impulse response is known as the transfer function of the system, and it is a lot like the frequency response of the system.

$$\hat{H}(z) = \sum_{n=-\infty}^{\infty} h(n) z^{-n}$$

A discrete-time LTI system is stable if and only if the transfer function has a region of convergence that includes the unit circle. The RoC gives us an idea of “how stable” the system is.
Causal Systems

For causal systems, \(h(n) = 0 \) for negative \(n \). In this case, the transfer function sum only has terms for positive \(n \):

\[
\hat{H}(z) = \sum_{n=0}^{\infty} h(n) z^{-n}
\]

So if the transfer function RoC for a causal system contains a circle of radius \(r \) in the complex plane, it must also contain all circles of radius greater than \(r \).

The RoC of the transfer function of a causal system always looks like this:

Poles and Zeroes

Difference equations have a transfer function with the form

\[
\hat{H}(z) = \frac{A(z)}{B(z)}
\]

where \(A \) and \(B \) are each polynomials in \(z \).

The roots of the denominator of the transfer function are called **poles**. The roots of the numerator are called **zeroes**. The places where the transfer function is infinite (the poles) determine the region of convergence.

As long as all the **poles lie strictly inside the unit circle**, the region of convergence will include the unit circle and the system will be **stable**. This is true only for **causal systems**.