Midterm Review

Lecture 30:

EECS 20 N—April 9, 2001
today's lecture: review of probs 1-3 of Midterm II

reading assignment: Chapter 9 of Lee and Varaiya
Problem 1

Problem 1

Problem 1

Problem 1
Input

A linear system always produces zero output in response to zero

their last argument, if

it is time-invariant iff

nextState and output do not depend on

above system is linear iff

nextState and output are linear

then it is not memoryless (unless vector s has dimension zero)

\[(u,(u)x,(u)s)\text{output} = (u)\text{if}\]

\[\cdots, 1, 2, 3, 0 = u \quad (u,(u)x,(u)s)\text{nextState} = (I + u)s\]

if a system can be represented in state-space form

\[f\]

is a linear function

a memoryless system is always time-invariant, and it is linear iff
Problem 1 (a)

$y(t) = \cos(\omega x(t))$

is not linear, since \cos is a nonlinear function.

For example, take $x(t) = 0$ for all t, obtain $y(t) = 1$ (instead of 0).

However, \mathcal{L} is memoryless and hence, time-invariant.
Problem 1(b)

\[x \ast y + I = h \]

original system can be written as

\[(I - t)g + (t)g = (t)h \]

\[(I - t)x + (t)x = (t)h \]

Note: the system is LTI, with impulse response

\[h(t) = \delta(t) + \delta(t-1) \]

original system can be written as

\[y(t) = x(t) + x(t-1) \]

- system is time-invariant
- system is not memoryless
- system is not linear: take \(I = (t)h \) obtain \(0 = (t)x \)

\[y(t) = x(t) + x(t-1) \]

\[y(t) + I = (t)h \]

\[x \ast y + I = h \]

\[(I - t)x + (t)x = (t)h \]

\[y(t) = x(t) + x(t-1) \]
The discrete-time system $y(n) = x(n) + 0.9x(n-1)$ is LTI; it can be represented in state-space form:

\[
\begin{align*}
(\mu)x + (\mu)s6.0 &= (\mu)\delta \\
(\mu)x &= (I + \mu)s
\end{align*}
\]

The system is not memoryless; it can be represented in state-space form:

\[
\begin{align*}
I &= \mu \neq 0 \\
0 &= \mu \neq 1 \\
\end{align*}
\]

where

\[
(\mu)\eta(\mu - \mu)x \quad \begin{array}{c}
\sum_{\mu=+\infty}^{\infty} \\
\sum_{\mu=-\infty}^{\infty}
\end{array} = (\mu)(x \ast \eta) = (\mu)\delta
\]

represented by the convolution sum.

\[
\begin{align*}
\text{Problem 1(c)}
\end{align*}
\]
Problem 1 (d)

The discrete-time system

\[((0)x + \cdots + (1 - u)x + (u)x)z = (u)h \]

is not memoryless:

The system is also defined by convolution with a given \(h \):

\[(x * y)(z) = h \]

is linear: hence, system is LTI.

\((0 \leq u \leq 1) \) for every \(u \) is (\(h(y) = (u)h \)), where \(h \) is the unit step (that is, \(h \text{ is the unit step} \))
The discrete-time system defined by
\[s(n+1) = ns(n) + x(n), \]
\[y(n) = 2s(n), \]
• system admits state-space representation \(s(n+1) = ns(n) + x(n), \)
\[y(n) = 2s(n), \]
hence, it is not memoryless.

The system is linear.

The system is not time-invariant (since the state-space representation coefficients depend on \(n \)).

\[(u)s_2 = (u)h \]
\[\cdots, 0 = u, (u)x + (u)su = (I + u)s \]

The discrete-time system defined by
\[(u)x + (u)su = (I + u)s \]

\textbf{Problem 1(e)}
Problem 1

The continuous-time system

\[y(t) = 0 \]

- System is memoryless, hence, time-invariant
- System is linear (despite the output being constant)

The continuous-time system

\[y(t) = 0 \]
For system \(S \), the matrix \(L \) describes how the \(n \) first input values relate to the first \(u \) values of \(y \).

Hence, \(L \) is the "upper triangular Toeplitz" matrix:

\[
\begin{bmatrix}
0 & y & \cdots & y \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & 0
\end{bmatrix} = L
\]
$D = \begin{bmatrix}
0 & 1 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & 1 \\
0 & \cdots & 0 & 0
\end{bmatrix}$

plays the same role for the unit delay system.
If \mathbf{f} is the output, then

$$\mathbf{F}_A \mathbf{X} = \mathbf{F}_B \mathbf{X} = \mathbf{F}_C$$

Conversely, take a signal x, delay it to get x_d, by definition, delay x to get x_d.

$$x_d = \mathbf{F}_A x$$

(underline refers to first values of signal)

$$x_d = \mathbf{F}_A x$$

To prove it, take a signal x, form x, and delay to get x_d, by definition.

$$x_d = \mathbf{F}_A x$$

Reflects the time-invariance of S.
Consider the system:

\[(1 - u)n_{1-u}(z^-) + (u)n_u(z^-) = (u)y\]

Impulse response: consider system

\[x = \delta\]

Obtain \(h = g\), where \(g(0) = 0\), \(g(1) = -2\), \(g(2) = 4\), ...

More generally, obtain that \(g(n) = (-2)^n u(n)\) (where \(u\) is unit step).

Impulse response: consider system

\[x = \delta_{n-1}\]

Obtain \(y\) response.

Impulse response: consider system

\[(u)x = (1 - u)y + (u)y\]

Impulse response: consider system
\[
\frac{m - \vartheta z + 1}{m - \vartheta + 1} = (m) H
\]

hence

\[m - \vartheta + 1 = m - \vartheta (m) H z + (m) H\]

\((u) x\) after dividing both sides by \((u) x\) obtain

\[(1 - u) x + (u) x = (1 - u) \tilde{z} + (u) \tilde{z}\]

\((m) H\) and eliminate in \(u m \vartheta (m) H = (u) \tilde{z}\) \(u m \vartheta = (u) x\) use frequency response
Let's find an exponential output such that output is zero output.

(\text{say}) \ \nu = \omega \ \text{or} \ \nu = -1, \ \text{that is:} \ \cos \ \omega = -1, \ \text{hence the imaginary part is also zero.}

\text{Hence, response to imaginary part is also zero.}
\[I = p = c, \quad -q = q, \quad -z = z \]

above is a 1-D, SISO state-space model, with

\[
(u)x + (u)s = (u)\hat{s}
\]

and

\[
(1 - u)x - (1 - u)s\hat{z} = (1 - u)s = \\
\left\{(1 - u)x - \left((1 - u)x - (1 - u)\hat{s}\right)\hat{z}
ight\} = \\
(1 - u)x + (1 - u)\hat{s}\hat{z} = (u)s
\]

try

\[
(u)x - (u)\hat{s} = (u)s
\]

state-space model
\[\frac{m_i - \vartheta \mathcal{Z} + 1}{m_i - \vartheta + 1} = (m)H \]

where

\[(\frac{u \nu_i \vartheta (\nu)H + z/\nu \nu_i \vartheta z/\nu_i \vartheta (z/\nu)H + (0)H}{e \mathcal{Z}}) \vartheta \mathcal{Z} = (u)(\bar{u}) \]

hence, response is

\[\left(\frac{u \nu_i \vartheta + z/\nu \nu_i \vartheta z/\nu_i \vartheta + 0 \vartheta}{\mathcal{Z}} \right) \vartheta \mathcal{Z} = (u)x \]

we have

\[(u \nu \cos + (z/\nu \nu) \sin + z = (u)x \]