
Heterogeneous Concurrent Modeling and Design
Coding Style

Authors: Christopher Brooks

Edward A. Lee

6.1 Motivation
Collaborative software projects benefit when participants read code created by other participants.

The objective of a coding style is to reduce the fatigue induced by unimportant formatting differences
and differences in naming conventions. Although individual programmers will undoubtedly have pref-
erences and habits that differ from the recommendations here, the benefits that flow from following
these recommendations far outweigh the inconveniences. Published papers in journals are subject to
similar stylistic and layout constraints, so such constraints are not new to the academic community.

Software written by the Ptolemy Project participants follows this style guide. Although many of
these conventions are arbitrary, the resulting consistency makes reading the code much easier, once
you get used to the conventions. We recommend that if you extend Ptolemy II in any way, that you fol-
low these conventions. To be included in future versions of Ptolemy II, the code must follow the con-
ventions.

In general, we follow the Sun Java Style guide (http://java.sun.com/docs/codeconv/). We encour-
age new developers to use Eclipse (http://www.eclipse.org) as their development platform. Eclipse
includes a Java Formatter, and we have found that the Java Conventions style is very close to our
requirements.

A template that follows these rules can be found in $PTII/doc/coding/templates/Jav-
aTemplate.java, where $PTII is the location of your Ptolemy II installation. In addition, several
useful tools are provided in the directories under $PTII/util/ to help enforce the standards.
• lisp/ptjavastyle.el is a lisp module for GNU Emacs that has appropriate indenting rules.

This file works well with Emacs under both Unix and Windows.
• testsuite/jindent is a shell script that uses Emacs and the above module to properly indent

many files at once. This script works best under Unix, but can work under Windows with Cygwin.
To see how this script would all the Java files in a directory, run:
179

Coding Style
$PTII/util/testsuite/jindent -q *.java
To indent the files and check the changes in to CVS, remove the -q option.

• testsuite/ptspell is a shell script that checks Java code and prints out an alphabetical list
of unrecognized spellings. It properly handles namesWithEmbeddedCapitalization and has a list of
author names. This script works best under Unix. Under Windows, it would require the installation
of the ispell command as /usr/local/bin/ispell. To run this script, type
$PTII/util/testsuite/ptspell *.java

• testsuite/chkjava is a shell script for checking various other potentially bad things in Java
code, such as debugging code, and FIXME’s. This script works under both Unix and Windows. To
run this script, type:
$PTII/util/testsuite/chkjava *.java

6.2 Anatomy of a File
A Java file has the structure shown in figure 6.1. The key points to note about this organization are:

• The file is divided into sections with highly visible delimiters. The sections contain constructors,
public variables (including ports and parameters for actor definitions), public methods, protected
variables, protected members, private methods, and private variables, in that order. Note in partic-
ular that although it is customary in the Java community to list private variables at the beginning of
a class definition, we put them at the end. They are not part of the public interface, and thus should
not be the first thing you see.

• Within each section, methods appear in alphabetical order, in order to easily search for a particular
method (in printouts, for example, finding a method can be very difficult if the order is arbitrary,
and use of printouts during design and code reviews is very convenient). If you wish to group
methods together, try to name them so that they have a common prefix. Static methods are gener-
ally mixed with non-static methods.

The key sections are explained below.

6.2.1 Copyright
The copyright used in Ptolemy II is shown in figure 6.2. This style of copyright is often referred to

the community as a “BSD” copyright because it was used for the “Berkeley standard distribution” of
Unix. It is much more liberal that the commonly used “GPL” or “Gnu Public License,” which encum-
bers the software and derivative works with the requirement that they carry the source code and the
same copyright agreement. The BSD copyright requires that the software and derivative work carry the
identity of the copyright owner, as embodied in the lines:

Copyright (c) 1999-2005 The Regents of the University of California.
All rights reserved.

The copyright also requires that copies and derivative works include the disclaimer of liability in
BOLD. It specifically does not require that copies of the software or derivative works carry the middle
paragraph, so such copies and derivative works need not grant similarly liberal rights to users of the
software.

The intent of the BSD copyright is to maximize the potential impact of the software by enabling
uses of the software that are inconsistent with disclosing the source code or granting free redistribution
180 Ptolemy II

Coding Style
/* One line description of the class.

copyright notice

*/

package name;

imports, in alphabetical order;

//
//// ClassName
/**
Class documentation.

@author Author Name
@version Id
@Pt.ProposedRating color (email of proposer)
@Pt.AcceptedRating color (email of accepter)
*/
public class ClassName ... {

constructors

 ///
 //// public variables ////

public variables, in alphabetical order

 ///
 //// public methods ////

public methods, in alphabetical order

 ///
 //// protected methods ////

protected methods, in alphabetical order

 ///
 //// protected variables ////

protected variables, in alphabetical order

///
 //// private methods ////

private methods, in alphabetical order

 ///
 //// private variables ////

private variables, in alphabetical order
}

FIGURE 6.1. Anatomy of a Java file.
Heterogeneous Concurrent Modeling and Design 181

Coding Style
rights. For example, a commercial enterprise can extend the software, adding value, and sell the origi-
nal software embodied with the extensions. Economic principles indicate that granting free redistribu-
tion rights may render the enterprise business model untenable, so many business enterprises avoid
software with GPL licenses. Economic principles also indicate that, in theory, fair pricing of derivative
works must be based on the value of the extensions, the packaging, or the associated services provided
by the enterprise. The pricing cannot reflect the value of the free software, since an informed consumer
will, in theory, obtain that free software from another source.

Software with a BSD license can also be more easily included in defense or national-security
related applications, where free redistribution of source code and licenses may be inconsistent with the
mission of the software.

Ptolemy II can include other software with copyrights that are different from the BSD copyright.
In general, we do not include software with the GNU General Public License (GPL) license, because
provisions of the GPL license require that software with which GLP’d code is integrated also be
encumbered by the GPL license. We make an exception for GPL’d code that is aggregated with
Ptolemy II but not directly combined with Ptolemy II. For example cvs2cl.pl is a GPL’d Perl script that
access the CVS database and generates a ChangeLog file. This script is not directly called by Ptolemy
II, and we include it as a “mere aggregation” and thus Ptolemy II does not fall under the GPL. Note
that we do not include GPL’d Java files that are compiled and then called from Ptolemy II because this
would combine Ptolemy II with the GPL’d code and thus encumber Ptolemy II with the GPL.

Another GNU license is the GNU Library General Public License now known as the GNU Lesser
General Public License (LGPL). We try to avoid packages that have this license, but we on occasion
we have included them with Ptolemy II. The LGPL license is less strict than the GPL - the LGPL per-
mits linking with other packages without encumbering the other package.

 Copyright (c) 1999-2005 The Regents of the University of California.
 All rights reserved.
 Permission is hereby granted, without written agreement and without
 license or royalty fees, to use, copy, modify, and distribute this
 software and its documentation for any purpose, provided that the above
 copyright notice and the following two paragraphs appear in all copies
 of this software.

 IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY
 FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
 ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF
 THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF
 SUCH DAMAGE.

 THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
 INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE
 PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
 CALIFORNIA HAS NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
 ENHANCEMENTS, OR MODIFICATIONS.

 PT_COPYRIGHT_VERSION_2
 COPYRIGHTENDKEY

FIGURE 6.2. Copyright notice used in Ptolemy II.
182 Ptolemy II

Coding Style
In general, it is best if you avoid GNU code. If you are considering using code with the GPL or
LGPL, we encourage you to carefully read the license and to also consult the GNU GPL FAQ at http:/
/www.gnu.org/licenses/gpl-faq.html.

We also avoid including software with proprietary copyrights that do not permit redistribution of
the software.

The date of the copyright for newly created files should be the current year:
Copyright (c) 2005 The Regents of the University of California.
All rights reserved.

If a file is a copy of a previously copyrighted file, then the start date of the new file should be the
same as that of the original file:

Copyright (c) 1999-2005 The Regents of the University of California.
All rights reserved.

Ideally, files should have at most one copyright from one institution. Files with multiple copyrights
are often in legal limbo if the copyrights conflict. If necessary, two institutions can share the same
copyright:

Copyright (c) 2005 The Ptolemy Institute and The Regents of the
University of California.
All rights reserved.

Ptolemy II includes a copyright management system that will display the copyrights of packages
that are included in Ptolemy II at runtime. The copyright management system is under development
and likely to change. Currently, URLs such as about: and about:copyright are handled specially.
If, within Ptolemy, the user clicks on a link with a target URL of about:copyright, then we eventu-
ally invoke code within $PTII/ptolemy/actor/gui/GenerateCopyrights.java. This class searches the
runtime environment for particular packages and generates a web page with the links to the appropriate
copyrights if certain packages are found.

6.2.2 Imports
The imports section identifies the classes outside the current package on which this class depends.

The package structure of Ptolemy II is carefully constructed so that core packages do not depend on
more elaborate packages. This limited dependencies makes it possible to create derivative works that
leverage the core but drastically modify or replace the more advanced capabilities.

By convention, we list imports by full class name, as follows:

import ptolemy.kernel.CompositeEntity;
import ptolemy.kernel.Entity;
import ptolemy.kernel.Port;
import ptolemy.kernel.util.IllegalActionException;
import ptolemy.kernel.util.Locatable;
import ptolemy.kernel.util.NameDuplicationException;

in particular, we do not use the wildcards supported by Java, as in:
Heterogeneous Concurrent Modeling and Design 183

Coding Style
import ptolemy.kernel.*;
import ptolemy.kernel.util.*;

The reason that we discourage wildcards is that the full class names in import statements makes it eas-
ier find classes that are referenced in the code. If you use an IDE such as Eclipse, it is trivially easy to
generate the import list in this form, so there is no reason to not do it.

Imports are ordered alphabetically by package first, then by class name, as shown above.

6.3 Comment Structure
Good comments are essential to readable code. In Ptolemy II, comments fall into two categories,

Javadoc comments, which become part of the generated documentation, and code comments, which do
not. Javadoc comments are used to explain the interface to a class, and code comments are used to
explain how it works.

Both Javadoc and code comments should be complete sentences and complete thoughts, capital-
ized at the beginning and with a period at the end. Spelling and grammar should be correct.

6.3.1 Javadoc and HTML
Javadoc is a program distributed with Java that generates HTML documentation files from Java

source code files1. Javadoc comments begin with “/**” and end with “*/”. The comment immedi-
ately preceding a method, member, or class documents that method, member, or class. Ptolemy II
classes include Javadoc documentation for all classes and all public and protected members and meth-
ods. Members and methods should appear in alphabetical order within their protection category (pub-
lic, protected etc.) so that it is easy to find them in the Javadoc output.

When writing Javadoc comments, pay special attention to the first sentence of each Javadoc com-
ment. This first sentence is used as a summary in the Javadocs. It is extremely helpful if the first sen-
tence is a cogent and complete summary.

Javadoc comments can include embedded HTML formatting. For example, by convention, in actor
documentation, we set in italics the names of the ports and parameters using the syntax

/** In this actor, inputs are read from the <i>input</i> port ... */

The Javadoc program gives extensive diagnostics when run on a source file. Our policy is to for-
mat the comments until there are no Javadoc warnings. Private members and methods need not be doc-
umented by Javadoc comments. The doccheck tool from http://java.sun.com/j2se/javadoc/doccheck/
index.html gives even more extensive diagnostics in HTML format. We encourage developers to run
doccheck and fix all warnings.

6.3.2 Class documentation
The class documentation is the Javadoc comment that immediately precedes the class definition

line. It is a particularly important part of the documentation. It should describe what the class does and

1. See http://java.sun.com/j2se/javadoc/writingdoccomments/ for guidelines from Sun Microsystems on writing
Javadoc comments.
184 Ptolemy II

Coding Style
how it is intended to be used. When writing it, put yourself in the mind of the user of your class. What
does that person need to know? In particular, that person probably does not need to know how you
accomplish what the class does. She only needs to know what you accomplish.

A class may be intended to be a base class that is extended by other programmers. In this case,
there may be two distinct sections to the documentation. The first section should describe how a user
of the class should use the class. The second section should describe how a programmer can meaning-
fully extend the class. Only the second section should reference protected members or methods. The
first section has no use for them. Of course, if the class is abstract, it cannot be used directly and the
first section can be omitted.

Comments should include honest information about the limitations of a class.
Each class comment should also include the following javadoc tags:

• @author
The @author tag should list the authors and contributors of a class, for example:
@author Claudius Ptolemaus, Contributor: Tycho Brahe

• @version
The @version tag includes text that CVS automatically substitutes in the version. The @version
tag starts out with:
@version Id
When the file is committed using CVS, the Id gets substituted, so the tag might look like:
@version $Id: NamedObj.java,v 1.213 2003/10/26 05:34:21 brahe Exp $

• @since
The @since tag refers the release that the class first appeared in. Usually, this is one decimal place
after the current release. For example if the current release is 3.0.2, then the @since tag would
read:
@since Ptolemy II 3.1
Adding an @since tag to a new class is optional, we usually update these tags by running a script
when we do a release. However, authors should be aware of their meaning. Note that the @since
tag can also be used when a method is added to an existing class, which will help users notice new
features in older code.

• @Pt.ProposedRating

• @Pt.AcceptedRating
Code rating tags, discussed below.

6.3.3 Code rating
The javadoc tags @Pt.ProposedRating and @Pt.AcceptedRating contain code rating infor-

mation. Each tag includes the color (one of red, yellow, green, or blue) and the cvs login of the
person responsible for the proposed or accepted rating level, for example:

@Pt.ProposedRating blue ptolemy
@Pt.AcceptedRating green ptolemy

The intent of the code rating is to clearly identify to readers of the file the level of maturity of the
contents. The Ptolemy Project encourages experimentation, and experimentation often involves creat-
ing immature code, or even “throw-away” code. Such code is red. We use a lightweight software engi-
neering process documented in “Software Practice in the Ptolemy Project,”2 to raise the code to higher
ratings. That paper documents the ratings a:
• Red code is untrusted code. This means that we have no confidence in the design or implementation
Heterogeneous Concurrent Modeling and Design 185

Coding Style
(if there is one) of this code or design, and that anyone that uses it can expect it to change substantially
and without notice. All code starts at red.
• Yellow code is code with a trusted design. We have a reasonable degree of confidence in the design,
and do not expect it to change in any substantial way. However, we do expect the API to shift around a
little during development.
• Green code is code with a trusted implementation. We have confidence that the implementation is
sound, based on test suites and practical application of the code. If possible, we try not to release
important code unless it is green.
• Blue marks polished and complete code, and also represents a firm commitment to backwards-com-
patibility. Blue code is completely reviewed, tested, documented, and stressed in actual usage.
We use a javadoc doclet at $PTII/doc/doclets/RatingTaglet.java to add the ratings to the
javadoc output.

6.3.4 Constructor documentation
Constructor documentation usually begins with the phrase “Construct an instance that ...” and goes

on to give the properties of that instance. Note the use of the imperative case. A constructor is a com-
mand to construct an instance of a class. What it does is construct an instance.

6.3.5 Method documentation
Method documentation needs to state what the method does and how it should be used. For exam-

ple:

/** Mark the object invalid, indicating that when a method
* is next called to get information from the object, that
* information needs to be reconstructed from the database.
*/

public void invalidate() {
_valid = false;

}

By contrast, here is a poor method comment:

/** Set the variable _valid to false.
*/

public void invalidate() {
_valid = false;

}

While this certainly describes what the method does from the perspective of the coder, it says nothing
useful from the perspective of the user of the class, who cannot see the (presumably private) variable
_valid nor how that variable is used. On closer examination, this comment describes how the method is

2. J. Reekie, S. Neuendorffer, C. Hylands and E. A. Lee “Software Practice in the Ptolemy Project,” Technical
Report Series, GSRC-TR-1999-01, Gigascale Semiconductor Research Center, University of California, Berke-
ley, CA 94720, April 1999,
http://ptolemy.eecs.berkeley.edu/ptolemyII/ptIIlatest/ptII/doc/coding/sftwareprac/index.htm
186 Ptolemy II

Coding Style
accomplishing what it does, but it does not describe what it accomplishes.
Here is an even worse method comment:

/** Invalidate this object.
*/

public void invalidate() {
_valid = false;

}

This says absolutely nothing.
Note the use of the imperative case in all of the above comments. It is common in the Java commu-

nity to use the following style for documenting methods:

/** Sets the expression of this variable.
* @param expression The expression for this variable.
*/

public void setExpression(String expression) {
...

}

We use instead the imperative case, as in

/** Set the expression of this variable.
* @param expression The expression for this variable.
*/

public void setExpression(String expression) {
...

}

The reason we do this is that our sentence is a well-formed, grammatical English sentence, while the
usual convention is not (it is missing the subject). Moreover, calling a method is a command “do this,”
so it seems reasonable that the documentation say “Do this.” The use of imperative case has a large
impact on how interfaces are documented, especially when using the listener design pattern. For
instance, the java.awt.event.ItemListener interface has the method:

/** Invoked when an item has been selected or deselected.
* The code written for this method performs the operations
* that need to occur when an item is selected (or deselected).
*/

void itemStateChanged(ItemEvent e);

A naive attempt to rewrite this in imperative tense might result in:

/** Notify this object that an item has been selected or deselected.
*/

void itemStateChanged(ItemEvent e);

However, this sentence does not capture what the method does. The method may be called in order to
Heterogeneous Concurrent Modeling and Design 187

Coding Style
notify the listener, but the method does not “notify this object”. The correct way to concisely document
this method in imperative case (and with meaningful names) is:

/** React to the selection or deselection of an item.
*/

void itemStateChanged(ItemEvent event);

The above is defining an interface (no implementation is given). To define the implementation, it is
also necessary to describe what the method does:

/** React to the selection or deselection of an item by doing...
*/

void itemStateChanged(ItemEvent event) { ... implementation ... }

Comments for base class methods that are intended to be overridden should include information
about what the method generally does, plus information that a programmer may need to override it. If
the derived class uses the base class method (by calling super.methodName()), but then appends to
its behavior, then the documentation in the derived class should describe both what the base class does
and what the derived class does.

6.3.6 Referring to methods in comments
By convention, method names are set in the default font, but followed by empty parentheses, as in

/** The fire() method is called when ... */

The parentheses are empty even if the method takes arguments. The arguments are not shown. If the
method is overloaded (has several versions with different argument sets), then the text of the documen-
tation needs to distinguish which version is being used.

Other methods in the same class may be linked to with the {@link ...} Javadoc tag. For example,
to link to a foo() method that takes a String:

* Unlike the {@link #foo(String)} method, this method ...

Methods and members in the same package should have an octothorpe (# sign) prepended. Methods
and members in other classes should use the fully qualified class name:

{@link ptolemy.util.StringUtilities.substitute(String, String,
String)}

Links to methods should include the types of the arguments.
To run Javadoc on the classes in the current directory, run make docs, which will create the

HTML javadoc output in the doc/codeDoc subdirectory. To run Javadoc for all the common packages,
run

cd $PTII/doc; make docs

The output will appear in $PTII/doc/codeDoc. Actor documentation can be viewed from within
Vergil, right clicking on an actor and selecting View Documentation.
188 Ptolemy II

Coding Style
6.3.7 Tags in method documents
Methods should include Javadoc tags @param (one for each parameter), @return (unless the

return type is void), and @exception (unless no exceptions are thrown). Note that we do not use the
@throws tag, and that @returns is not a legitimate Javadoc tag, use @return instead.

The annotation for the arguments (the @param statement) need not be a complete sentence, since
it is usually presented in tabular format. However, we do capitalize it and end it with a period.

Exceptions that are thrown by a method need to be identified in the Javadoc comment. An
@exception tag should read like this:

* @exception MyException If such and such occurs.

Notice that the body always starts with "If", not "Thrown if", or anything else. Just look at the Javadoc
output to see why. In the case of an interface or base class that does not throw the exception, use the
following:

* @exception MyException Not thrown in this base class. Derived
* classes may throw it if such and such happens.

The exception still has to be declared so that derived classes can throw it, so it needs to be documented
as well.

6.3.8 FIXME annotations
We use the keyword “FIXME” in comments to mark places in the code with known problems. For

example:

// FIXME: The following cast may not always be safe.
Foo foo = (Foo)bar;

To set up Eclipse to highlight FIXMEs, see the instructions in $PTII/doc/coding/eclipse.htm.

6.4 Code Structure
6.4.1 Names of classes and variables

In general, the names of classes, methods and members should consist of complete words sepa-
rated using internal capitalization3. Class names, and only class names, have their first letter capital-
ized, as in AtomicActor. Method and member names are not capitalized, except at internal word
boundaries, as in getContainer(). Protected or private members and methods are preceded by a leading
underscore “_” as in _protectedMethod().

Static final constants should be in uppercase, with words separated by underscores, as in
INFINITE_CAPACITY. A leading underscore should be used if the constant is protected or private.

3. Yes, there are exceptions (NamedObj, CrossRefList, IOPort). Many discussions dealt with these names, and we
still regret not making them complete words.
Heterogeneous Concurrent Modeling and Design 189

Coding Style
Package names should be short and not capitalized, as in “de” for the discrete-event domain.
In Java, there is no limit to name sizes (as it should be). Do not hesitate to use long names.

6.4.2 Indentation and brackets
Nested statements should be indented by 4 characters, as in:

if (container != null) {
Manager manager = container.getManager();
if (manager != null) {

manager.requestChange(change);
}

}

Closing brackets should be on a line by themselves, aligned with the beginning of the line that contains
the open bracket. Please avoid using the Tab character in source files. The reason for this is that code
becomes unreadable when the Tab character is interpreted differently by different programs. Your text
editor should be configured to react to the Tab key by inserting spaces rather than the tab character. To
set up Emacs to follow the Ptolemy II indentation style, see $PTII/util/lisp/ptemacs.el. To set up
Eclipse to follow the Ptolemy II indentation style, see the instructions in $PTII/doc/coding/eclipse.htm.

Long lines should be broken up into many small lines. The easiest places to break long lines are
usually just before operators, with the operator appearing on the next line. Long strings can be broken
up using the + operator in Java, with the + starting the next line. Continuation lines are indented by 8
characters, as in the throws clause of the constructor in figure 6.1.

6.4.3 Spaces
Use a space after each comma:

 Right: foo(a, b);
 Wrong: foo(a,b);

Use spaces around operators such as plus, minus, multiply, divide or equals signs, after semicolons and
after keywords like if, else, for, do, while, try, catch and throws:

 Right: a = b + 1;
 Wrong: a=b+1;
 Right: for(i = 0; i < 10; i += 2)
 Wrong: for (i=0 ;i<10;i+=2)

Right: if (a == b) {
 Wrong: if(a==b)

6.4.4 Exceptions
A number of exceptions are provided in the ptolemy.kernel.util package. Use these exceptions

when possible because they provide convenient constructor arguments of type Nameable that identify
the source of the exception by name in a consistent way.

A key decision you need to make is whether to use a compile-time exception or a run-time excep-
190 Ptolemy II

Coding Style
tion. A run-time exception is one that implements the RuntimeException interface. Run-time excep-
tions are more convenient in that they do not need to be explicitly declared by methods that throw
them. However, this can have the effect of masking problems in the code.

The convention we follow is that a run-time exception is acceptable only if the cause of the excep-
tion can be tested for prior to calling the method. This is called a testable precondition. For example, if
a particular method will fail if the argument is negative, and this fact is documented, then the method
can throw a run-time exception if the argument is negative. On the other hand, consider a method that
takes a string argument and evaluates it as an expression. The expression may be malformed, in which
case an exception will be thrown. Can this be a run-time exception? No, because to determine whether
the expression is malformed, you really need to invoke the evaluator. Making this a compile-time
exception forces the caller to explicitly deal with the exception, or to declare that it too throws the
same exception. In general, we prefer to use compile-time exceptions wherever possible.

When throwing an exception, the detail message should be a complete sentence that includes a
string that fully describes what caused the exception. For example

throw IllegalActionException(this,
"Cannot append an object of type: "

+ obj.getClass().getName() + " because "
+ "it does not implement Cloneable.");

Note that the exception not only gives a way to identify the objects that caused the exception, but also
why the exception occurred. There is no need to include in the message an identification of the “this”
object passed as the first argument to the exception constructor. That object will be identified when the
exception is reported to the user.

If an exception is caught, be sure to use exception chaining to include the original exception. For
example:

String fileName = foo();
try {

// Try to open the file
} catch (IOException ex) {

throw new IllegalActionException(this, ex,
"Failed to open '" + fileName + "'");

}

6.5 Directory naming conventions
Individual demonstrations should be in directories under a demo/ directory. The name of the

directory, and the name of the model should match and both begin with capital letters. The demos
should be capitalized so that it is possible to generate code for demonstrations. For example, the But-
terfly demonstration is in sdf/demo/Butterfly/Butterfly.xml.

All other directories begin with lower case letters and most consist solely of lower case letters.
Heterogeneous Concurrent Modeling and Design 191

Coding Style
192 Ptolemy II

	6 Coding Style
	6.1 Motivation
	6.2 Anatomy of a File
	FIGURE 6.1. Anatomy of a Java file.
	6.2.1 Copyright
	FIGURE 6.2. Copyright notice used in Ptolemy II.

	6.2.2 Imports

	6.3 Comment Structure
	6.3.1 Javadoc and HTML
	6.3.2 Class documentation
	6.3.3 Code rating
	6.3.4 Constructor documentation
	6.3.5 Method documentation
	6.3.6 Referring to methods in comments
	6.3.7 Tags in method documents
	6.3.8 FIXME annotations

	6.4 Code Structure
	6.4.1 Names of classes and variables
	6.4.2 Indentation and brackets
	6.4.3 Spaces
	6.4.4 Exceptions

	6.5 Directory naming conventions

