
Behavioral Types for Component-Based Design

Edward A. Lee and Yuhong Xiong
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley
Berkeley, CA 94720, USA

{eal, yuhong}@eecs.berkeley.edu

Abstract. We present a framework to extend the concept of type systems in programming languages to
capture the dynamic interaction in component-based design, including the communication protocols
between components. Our system is based on a light-weight formalism - interface automata. We first
propose some extensions to the theory of interface automata to make them more powerful, then use the
extended theory to establish a behavioral-level type system. In our system, the interaction types and the
dynamic behavior of components are defined using interface automata, and type checking, which
checks the compatibility of a component with a certain interaction type, is conducted through automata
composition. Our type system is polymorphic in that a component may be compatible with more than
one interaction type. We show that a subtyping relation exists among various interaction types and that
this relation can be described using a partial order. This behavioral type order can be used to facilitate
the design of polymorphic components and simplify type checking. In addition to static type checking,
we also propose to extend the use of interface automata to the on-line reflection of component states
and to run-time type checking. We illustrate our framework using a component-based design environ-
ment, Ptolemy II, and discuss the trade-offs in the design of behavioral type systems.

Keywords: Behavioral type; Component-based design; Interface automata; Polymorphism; Alternating
simulation

1. Introduction
Type systems are one of the most successful formal methods in software design. Modern poly-
morphic type systems, with their early error detection capabilities and the support for software
reuse, have led to considerable improvements in development productivity and software quality.

For embedded systems, component-based design is established as an important approach to
handle complexity. In this area, type systems can be used to greatly improve the quality of design
environments. Fundamentally, a type system detects mismatches at component interfaces and
ensures component compatibility. Interface mismatch can happen at (at least) two different levels.
One is the data type level. For example, if a component expects to receive an integer at its input,
but another component sends it a string, then the first component may not be able to function cor-
rectly. Many type system techniques in general purpose languages can be applied effectively to
ensure compatibility at this level (see [XiL00] and the references therein). The other level of mis-
match is the dynamic interaction behavior, such as the communication protocol the components
use to exchange data. Since embedded systems often have many concurrent computational activi-
ties and mix widely differing operations, components may follow widely different communica-
tion protocols. For example, some might use synchronous interaction (rendezvous) while others
use asynchronous message passing (see [Lee02] for many more examples). So far, most type sys-
tem research for component-based design, as well as for general purpose languages, concentrates
on data types, and leaves the checking of dynamic behavior to other techniques.

In this paper, we extend the concept of type systems to capture the dynamic aspects of compo-
nent interaction. We call the result behavioral types. In our approach, different interaction types

Technical Memorandum UCB/ERL, M02/29, University of California, Berkeley, CA 94720, USA, September 27, 2002.

and the dynamic behavior of components are described by automata, and type checking is con-
ducted through automata composition. In this paper, we choose a particular automata model
called interface automata [deH01] to define types. The particular strength of interface automata is
their composition semantics.

Traditionally, automata models are used to perform model checking at design time. Here, our
emphasis is not on model checking to verify arbitrary user code, but rather on compatibility of the
composition of pre-defined types. As such, the scalability of the methods is much less an issue,
since the size of the automata in question is fixed. We also propose to extend the use of automata
to on-line reflection of component state, and to do run-time type checking. To explore these con-
cepts, we have built an experimental platform based the Ptolemy II component-based design envi-
ronment [BCD02].

We have found that the design of behavioral types shares the same goals and trade-offs with
the design of a data-level type system. At the data level, research has been driven to a large degree
by the desire to combine the flexibility of dynamically typed languages with the security and early
error-detection potential of statically typed languages [Ode96]. As mentioned earlier, modern
polymorphic type systems have achieved this goal to a large extend. At the behavioral level, type
systems should also be polymorphic to support component reuse while ensuring component com-
patibility.

In programming languages, there are several kinds of polymorphism. In [CaW85], Cardelli and
Wegner distinguished two broad kinds of polymorphism: universal and ad hoc polymorphism.
Universal polymorphism is further divided into parametric and inclusion polymorphism. Para-
metric polymorphism is obtained when a function works uniformly on a range of types. Inclusion
polymorphism appears in object oriented languages when a subclass can be used in place of a
superclass. Ad hoc polymorphism is also further divided into overloading and coercion. In sys-
tems with subtyping and coercion, types naturally form a partial order [DaP90]. For example, in
object-oriented languages, the partial order is the inheritance hierarchy, and in languages that sup-
port type conversion, the relation in the partial order is the conversion relation, such as Int ≤ Dou-
ble, which means that an integer can be converted to a double. This latter relation is sometimes
considered as subtyping between primitive data types [Mit84]. In the Ptolemy II data type system,
the type hierarchy if further constrained to be a lattice, and type constraints are formulated and
solved over the lattice [XiL00][Xio02].

We form a polymorphic type system at the behavioral level through an approach similar to
subtyping. Using the alternating simulation relation of interface automata, we organize all the
interaction types in a partial order. Given this hierarchy, if a component is compatible with a cer-
tain type A, it is also compatible with all the subtypes of A. This property can be used to facilitate
the design of polymorphic components and simplify type checking.

Even with the power of polymorphism, no type system can capture all the properties of pro-
grams and allow type checking to be performed efficiently while keeping the language flexible.
So the language designer always has to decide what properties to include in the system and what
to leave out. Furthermore, some properties that can be captured by types cannot be easily checked
statically before the program runs. This is either because the information available at compile
time is not sufficient, or because that checking those properties is too costly. Hence, the designer
also needs to decide whether to check those properties statically or at run time. Any type system
represents some compromise. For example, array bound checking is very helpful in detecting pro-
gram errors, but it is hard to do efficiently by static checks. Some languages, such as C, do not
perform this check. Other languages, such as ML and Java, perform the check, but at run time,

and at the cost of run time performance. Some researchers propose to perform this check at com-
pile time [XiP98], but the technique requires the programer to insert annotations in the source
code, since modern languages do not include array bounds in their type systems.

Type systems at the behavioral level have similar trade-offs. Among all the properties in a
component-based design environment, we choose to check the compatibility of communication
protocols as the starting point. This is because communication protocols are the central piece in
many models of computation [Lee02] and determine many other properties in the models. Our
type system is extensible so other properties, such as deadlock in concurrent models, can be
included in type checking. Another reason we choose to check the compatibility of communica-
tion protocols is that it can be done efficiently, when a component is inserted in a model. More
complicated checking may need to be postponed to run time.

In our earlier work [LeX01], we use interface automata to specify the interaction types and use
alternating simulation as the subtyping relation. Recently, we observed that the original interface
automata model needs some extensions to work better in more situations, and some of the rela-
tions among behavioral types are not directly captured by alternating simulation. We propose to
extend the theory of interface automata to address these issue, and report these extensions in this
paper.

The rest of this paper is organized as follows. Section 2 gives an overview of interface autom-
ata. Section 3 discusses our extensions. Section 4 describes Ptolemy II, with emphasis on the
implementation of various communication protocols. Section 5 presents our behavioral type sys-
tem, including the type definition, the type hierarchy and some type checking examples. Section 6
discusses some issues in the behavioral type systems and related works. The last section con-
cludes the paper and points out our future research directions.

2. Overview of Interface Automata

2.1 An Example
Interface automata [deH01] are a light-weight formalism for the modeling of components and
their environments. As with other automata models, interface automata consist of states and tran-
sitions1, and are usually depicted by bubble-and-arc diagrams. There are three different kinds of
transitions in interface automata: input, output, and internal transitions. When modeling a soft-
ware component, input transitions correspond to the invocation of methods on the component, or
the returning of method calls from other components. Output transitions correspond to the invoca-
tion of methods on other components, or the returning of method calls from the component being
modeled. Internal transitions correspond to computations inside the component.

In behavioral-level modeling, one of the most frequently used examples is buffered communi-
cation. We will use interface automata to model such a scenario. Assume we have two software
components, a Producer and a Consumer, and that they communicate through a one-place buffer.
The buffer component has the following methods: put(), get(), hasRoom(), and hasToken(). The
producer uses hasRoom() to check whether the buffer has room for a token. If this method returns
true, it calls the put() method to put a token into the buffer. Similarly, the consumer uses hasTo-
ken() to check whether the buffer contains a token. If this method returns true, it calls get() to
extract the token. For the moment, let’s just model the part of the buffer interface used by the con-
sumer. We will add the interface for producer in later examples. Figure 1 shows the interface

1Transitions are called actions in [deH01].

automata model for the buffer. This and the subsequent figures are drawn in the Ptolemy II soft-
ware [BCD02]. The convention in interface automata is to label the input transitions with an end-
ing “?”, the output transitions with an ending “!”, and internal transitions with an ending “;”. The
block arrows on the sides of figure 1 denote the inputs and outputs of the automaton. They are:
• g: the invocation of the get() method of the buffer.
• t: the token returned in the get() call.
• hT: the invocation of the hasToken() method of the buffer.
• hTT: the value true returned from the hasToken() call, meaning that the buffer contains a

token.
• hTF: the value false returned from the hasToken() call, meaning that the buffer does not con-

tain a token.
Notice that the interaction with the producer is abstracted into one internal transition p_pR.

Here, p denotes the invocation of the put() method, and pR denotes the return of the put() call. The
initial state is state 0. When the actor is in this state, and the consumer queries whether there is a
token by calling hasToken(), the receiver returns false. This call and its return is modeled by the
transition from state 0 to 4, and 4 to 0. If the producer deposits a token, the automaton will move
to state 2. At this state, the hasToken() call will return true. If the consumer calls get() at state 2,
the buffer will return a token for this call. This is modeled by the transition from state 2 to 3, and
3 to 0.

This example illustrates an important characteristic of interface automata. That is, they do not
require all the states to accept all inputs. In figure 1, the input g is only accepted at state 2, but not
in any other states. This is opposed to other automata-based formalisms, such as I/O automata
[LyT81], where every input must be enabled at every state. By not requiring the model to be input
enabled, interface automata models are usually more concise, and do not include states that model
error conditions. In fact, interface automata take an optimistic approach to modeling, and they
reflect the intended behavior of components under a good environment. Under this philosophy,
error conditions are usually not explicitly modeled. For example, in figure 1, we do not have
states and transitions to describe the case when get() is called on an empty buffer.

2.2 Composition and Compatibility
Two interface automata can be composed if the names of their transitions (excluding the “?, !, ;”)
are disjoint, except that an input transition of one may coincide with an output transition of the
other. These overlapping transitions are called shared transitions. Shared transitions are taken syn-
chronously, and they become internal transitions in the composition. Figure 2 shows two con-

Figure 1. Interface automata model for a one-place buffer (only the consumer interface is modeled).

BufferForConsumer

sumer automata that can be composed with the automaton BufferForConsumer in figure 1. The
Consumer automaton in figure 2(a) keeps calling the hasToken() method of the buffer until it
returns true, then calls the get() method to extract the token. When composed with the Buffer-
ForConsumer automaton, all the transitions are shared transitions, and the composition result is
shown in figure 3(a). In figure 2(b), the consumer calls get() without first checking whether a
token is available. When this automaton is composed with the buffer, it may issue an output that
the buffer does not accept. For example, when both automata are in state 0, ConsumerNoHT may
issue g, which BufferForConsumer does not accept. This means that the pair of states (0, 0) in the
product automaton BufferForConsumer⊗ConsumerNoHT is illegal.

In interface automata, illegal states are pruned out in the composition. Furthermore, all states
that can reach illegal states through output or internal transitions are also pruned out. This is
because the environment cannot prevent the automata from entering illegal states from these
states. As a result, the composition of BufferForConsumer and ConsumerNoHT is an empty
automaton without any states, as shown in figure 3(b). This is a key property of interface autom-
ata. More conventional automaton composition always results in a state space that is the product
of the composed state spaces, and hence is significantly larger. Interface automata often compose
to form smaller automata.

The above examples illustrate the key notion of compatibility in interface automata. Two
automata are compatible if their composition is not empty. This notion gives a formal definition
for the informal statement “two components can work together”. The composition automaton

Figure 2. Two consumer automata.

Consumer

(a) (b)

ConsumerNoHT

Figure 3. Composition of BufferForConsumer in figure 1 and the two consumer automata in figure 2.
(a) (b)

BufferForConsumer_ConsumerNoHTBufferForConsumer_Consumer

defines exactly how they can work together. In behavioral types, we use interface automata to
describe various communication protocols, or the interaction types for components. To check
whether a certain component is compatible with a communication protocol, we can simply com-
pose the automata models of the component and the protocol, and check whether the result is
empty. This yields a straightforward algorithm for type checking, which is the main attraction of
interface automata to behavioral types.

The approach to composition in interface automata is optimistic. If two components are com-
patible, there is some environment that can make them work together. In the traditional pessimis-
tic approach, two components are compatible if they can work together in all environments.
Because of this difference, the composition of interface automata is usually smaller than the com-
position in other automata models.

2.3 Alternating Simulation
Interface automata have a notion of alternating simulation, which is used to simplify type check-
ing in our system. Informally, for two interface automata P and Q, there is an alternating simula-
tion relation from Q to P if all the input steps of P can be simulated by Q, and all the output steps
of Q can be simulated by P. For example, the BufferWithDefault automaton in figure 4 models a
buffer that can return a default token when it is empty. This automaton has an additional state, 6,
compared to the one in figure 1, and the transition between state 0 and this state models the get()
call and the return of the default token when the buffer is empty. There is an alternating simula-
tion relation from BufferWithDefault to BufferForConsumer.

If there is an alternating simulation relation from Q to P, a theorem states that if a third autom-
aton R is compatible with P, and the input transitions of Q that are shared with the output transi-
tions of R is a subset of the input transitions of P that are shared with the output transitions of R,
then Q and R are also compatible. In our example, since the Consumer automaton is compatible
with BufferForConsumer, it is also compatible with BufferWithDefault.

3. Extensions to Interface Automata

3.1 Transient States
Suppose we want to extend the buffer example above to include the producer in the model. We
can design a buffer like the one in figure 5, and a producer like the one in figure 6. In both figures,
p and pR represent the call to the put() method and its return, and hR, hRT, hRF represent the call
to hasRoom() and the two possible return values, true and false. These are the interaction between

Figure 4. A buffer that can return a default token.

BufferWithDefault

the buffer and the producer. Now, if we compose the Producer in figure 6, the Buffer in figure 5,
and the Consumer in figure 2(a), the result is an empty automaton!

This result may be surprising, but if we examine these automata carefully, we can find many
ways that the composition gets into illegal states. For example, if the producer calls hasRoom(),
the Producer automaton moves to state 1, and the Buffer moves to state 6. At this time, if the con-
sumer calls hasToken(), the Buffer automaton cannot accept this call at state 6, so the state (1, 6,
0) in Producer⊗Buffer⊗Consumer is illegal. Another situation where we enter illegal state is that
the producer calls put(), but before this call is returned, the consumer calls hasToken(). Since
these illegal states are reachable from the initial states of the automata, the whole composition is
empty.

The issue here is that when we design the buffer like figure 5, we assume that its methods are
non-interruptible. In fact, when we implement such a buffer in software, we probably will protect
all of its methods, put(), get(), hasRoom(), and hasToken(), as critical sections. For example, if we
implement these methods in Java, we will make them synchronized methods to achieve mutual
exclusion. However, in interface automaton, there is an intermediate state between the input tran-
sition that represents a method call, and the output transition that represents the return of the call.
So in the interface automaton model, the methods become interruptible.

 If want to model the synchronization mechanism in Java, we will need to add an output “lock”
and another “unlock,” and any correct composition would have to check so that it never tries to
send an automaton an input if it is locked. This would be really cumbersome. Since such mutexes
are so common, we want to support them in the automata formalism. Moreover, they are more

Figure 5. A one-place buffer.

Buffer

Figure 6. A producer.

Producer

common in interface automata than in ordinary automata because of the separation of inputs and
outputs.

To do this, we introduce a notion of transient state. These are the above intermediate states.
We denote these states with a “t” at the end of their names in our block diagrams, as shown in fig-
ure 7. Transient states can only have output and internal transitions. When we compose two
automata, and one of the automata is in transient state, we do not take any output transition from
the non-transient state, and just move along the output or internal transitions of the transient state.
That is, the machine that is in a non-transient state stutters (remains in the same state and produces
no output). We currently do not allow the composition to enter a pair of state where both of them
are transient. The composition of the Producer in figure 6, the BufferWithTransient in figure 7,
and the Consumer in figure 2(a) is shown in figure 8.

Thus, our model accurately reflects the behavior of critical sections. Notice that transient state
is not required for traditional finite state machine (FSM) models [LeV01]. In FSM, we can com-
bine an input and an output into one transition. For example, the FSM model for the buffer is

Figure 7. A buffer with transient states.

BufferWithTransient

Figure 8. Composition of the Producer in figure 6, BufferWithTransient in figure 7, and Consumer in
figure 2(a).

Producer_BufferWithTransient_Consumer

shown in figure 9. By adding the notion of transient states to interface automata, we achieve the
ability in FSM to model non-interruptible input and output.

3.2 Projection Automata
In BufferWithTransient, there are four methods: put(), get(), hasRoom(), and hasToken(). Since
the last two are not directly used for communication, they can be viewed as “overhead” of the
communication. Suppose we want to study the amount of this overhead, we can count the number
of times these two methods are called. To do this, we can update BufferWithTransient by sending
out a “count” output every time hasRoom() or hasToken() is called. This buffer is shown in figure
10. Here, the output c represents the count event. It goes to a certain counter component. The
design of the counter is not important here, so we omit its details.

Now, suppose we want to study the relation between the BufferWithTransient in figure 7 and
the BufferWithCounter in figure 10, with respect to their compatibility with a consumer compo-
nent. Intuitively, BufferWithCounter is a more refined model for the BufferWithTransient, so if a
consumer can work with BufferWithTransient, it should work with BufferWithCounter. We would
like to capture this using a formal relation between these two automata, such as alternating simu-
lation. However, these two automata do not have an alternating simulation between them. If we
analyze them carefully, we realize that the additional transition c in BufferWithCounter is “inter-
fering” the alternating simulation. Even though this transition does not affect the consumer, it
obscures the relation between the two buffer automata with respect to the consumer. To remove

Figure 9. FSM model for the buffer in figure 7.

FSMBuffer

Figure 10. A buffer that counts the overhead methods.

BufferWithCounter

this interference and restore the alternating simulation, we propose to “hide” these transitions
from the external interface of the buffers. One way to do this hiding is to convert them to internal
transitions. We can view this operation as a projection of the whole interface of the buffers to the
subset of shared interface with Consumer. The projection of BufferWithTransient and BufferWith-
Counter to the Consumer are shown in figure 11 and figure 12, respectively.

Now, if we compute the alternating simulation between BufferWithTransientToConsumer and
BufferWithCounterToConsumer, there is indeed an alternating simulation from BufferWithCoun-
terToConsumer to BufferWithTransientToConsumer. So we have revealed the intuitive refine-
ment relation between these two automata.

If an automaton is compatible with a projection automaton, it is also compatible with the origi-
nal automaton. More specifically, if P’ is the projection of P onto R, and P’ and R are compatible,
P and R are compatible. To see this, notice that the product automata P⊗R and P’⊗R have the
same set of states and transitions, except that some of the transition labels are different. In partic-
ular, some of the input and output transitions in P⊗R are changed to internal transitions in P’⊗R.
Also, These two product automata have the same set of illegal states. Furthermore, for all the
states in P⊗R that can reach illegal states through internal and output transitions, there corre-
sponding states in P’⊗R can also reach the corresponding illegal states. In another word, when we
prune out all the illegal states and all the states that can reach the illegal states through internal and
output transitions in the two product automata, the set of states being pruned in P’⊗R is a super
set of that of P⊗R. So if the composition of P’⊗R is not empty, P⊗R is not empty.

Figure 11. The projection of BufferWithTransient onto Consumer.

BufferWithTransientToConsumer

Figure 12. The projection of BufferWithCounter onto Consumer.

BufferWithCounterToConsumer

Given this, we have the following:
Given three interface automata P, Q, and R, let P’ and Q’ be the projections of P and Q onto R.

If P’ is compatible with R, and there is an alternating simulation from Q’ to P’, then Q is compat-
ible with R.

In our example, P is BufferWithTransient, P’ is BufferWithTransientToConsumer, Q is Buffer-
WithCounter, Q’ is BufferWithCounterToConsumer, and R is Consumer. Since Consumer is com-
patible with BufferWithTransientToConsumer, it is also compatible with BufferWithCounter.

We can obtain similar result for the Producer automaton by symmetry.
The BufferWithTransient, Producer, and Consumer automata discussed in this model can be

viewed as a particular implementation of a model of computation. In this model, the communica-
tion between the producer and the consumer is asynchronous, and their execution is not statically
scheduled. There are many other models of computation with various nice properties, such as
static schedulability and determinacy [Lee02]. Some of these models are implemented in the
Ptolemy II environment.

4. Ptolemy II - A Component-Based Design Environment
Ptolemy II [BCD02] is a system-level design environment that supports component-based hetero-
geneous modeling and design. The focus is on embedded systems. In Ptolemy II, components are
called actors, and the channel of communication between actors is implemented by an object
called a receiver, as shown in figure 13. Receivers are contained in IOPorts (input/output ports),
which are in turn contained in actors.

Ptolemy II is implemented in Java. The methods in the receiver are defined in a Java interface
called Receiver. This interface assumes a producer/consumer model, and communicated data is
encapsulated in a class called Token. The put() method is used by the producer to deposit a token
into a receiver. The get() method is used by the consumer to extract a token from the receiver. The
hasToken() method, which returns a boolean, indicates whether a call to get() will trigger a NoTo-
kenException.

Aside from assuming a producer/consumer model, the Receiver interface makes no further
assumptions. It does not, for example, determine whether communication between actors is syn-
chronous or asynchronous. Nor does it determine the capacity of a receiver. These properties of a
receiver are determined by concrete classes that implement the Receiver interface. Each one of
these concrete classes is part of a Ptolemy II domain, which is a collection of classes implement-
ing a particular model of computation. In each domain, the receiver determines the communica-
tion protocol, and an object called a director controls the execution of actors. From the point of
view of an actor, the director and the receiver form its execution environment.

Each actor has a fire() method that the director uses to start the execution of the actor. During
the execution, an actor may interact with the receivers to receive or send data. Some of the
domains in Ptolemy II are:

Figure 13. A simple model in Ptolemy II.

producer
actor

consumer
actor

IOPort

Receiver

• Communicating Sequential Processes (CSP): As the name suggests, this domain implements a
rendezvous-style communication (sometimes called synchronous message passing), as in
Hoare’s communicating sequential processes model [Hoa78]. In this domain, the producer
and consumer are separate threads executing the fire() method of the actors. Whichever thread
calls put() or get() first blocks until the other thread calls get() or put(). Data is exchanged in
an atomic action when both the producer and consumer are ready.

• Process Networks (PN): This domain implements the Kahn process networks model of com-
putation [Kah74]. The Ptolemy II implementation is similar to that by Kahn and MacQueen
[KaM77]. In that model, just like CSP, the producer and consumer are separate threads exe-
cuting the fire() method. Unlike CSP, however, the producer can send data and proceed with-
out waiting for the receiver to be ready to receive data. This is implemented by a non-blocking
write to a FIFO queue with (conceptually) unbounded capacity. The put() method in a PN
receiver always succeeds and always returns immediately. The get method, however, blocks
the calling thread if no data is available. To maintain determinacy, it is important that pro-
cesses not be able to test a receiver for the presence of data. So the hasToken() method always
returns true. Indeed, this return value is correct, since the get() method will never throw a
NoTokenException. Instead, it will block the calling thread until a token is available.

• Synchronous Data Flow (SDF): This domain supports a synchronous dataflow model of com-
putation [LeM87]. This is different from the thread-based domains in that the producer and
consumer are implemented as finite computations (firings of a dataflow actor) that are sched-
uled (typically statically, and typically in the same thread). In this model, a consumer assumes
that data is always available when it calls get() because it assumes that it would not have been
scheduled otherwise. The capacity of the receiver can be made finite, statically determined,
but the scheduler ensures that when put() is called, there is room for a token. Thus, if schedul-
ing is done correctly, both get() and put() succeed immediately and return.

• Discrete Event (DE): This domain uses timed events to communicate between actors. Similar
to SDF, actors in the DE domain implement finite computations encapsulated in the fire()
method. However, the execution order among the actors is not statically scheduled, but deter-
mined at run time. Also, when a consumer is fired, it cannot assume that data is available.
Very often, when an actor with multiple input ports is fired, only one of the ports has data.
Therefore, for an actor to work correctly in this domain, it must check the availability of a
token using the hasToken() method before attempting to get a token from the receiver.

As can be seen, different domains impose different requirements for actors. Some actors, how-
ever, can work in multiple domains. These actors are called domain-polymorphic actors. One of
the goals of the behavioral type system is to facilitate the design of domain-polymorphic actors.

In Ptolemy II, there are more than ten domains implementing various models of computation,
including the ones discussed above. One of these domains implements interface automata.

5. Behavioral Types

5.1 Type Definition
As we mentioned before, we use interface automata to describe the behavior of Ptolemy II com-
ponents. In figure 14, the automaton SDFConsumer describes a consumer actor designed for the
SDF (synchronous dataflow) domain. The inputs and outputs of the automaton are:

• fC: the invocation of the fire() method of the consumer actor.
• fCR: the return from the fire() method.
• g: the invocation of the get() method of the receiver at the input port of the actor.
• t: the token returned in the get() call.
• hT: the invocation of the hasToken() method of the receiver.
• hTT: the value true returned from the hasToken() call, meaning that the receiver contains one

of more tokens.
• hTF: the value false returned from the hasToken() call, meaning that the receiver does not

contain any token.

The initial state is state 0. When the actor is in this state, and the fire() method is called, it calls
get() on the receiver to obtain a token. After receiving the token in state 3, it performs some com-
putation, and returns from fire().

In the SDF domain, an actor assumes that its fire() method will not be called again if it is
already inside this method. Also, the scheduler guarantees that data is available when a consumer
is fired, so the transition from state 2 to state 3 assumes that the receiver will return a token. An
error condition, such as the receiver throws NoTokenException when get() is called, is not explic-
itly described in the model.

The automaton shown in figure 15 describes an actor that can operate in wider variety of
domains. Since this actor is not designed under the assumption of the SDF domain, it does not
assume that data are available when it is fired. Instead, it calls hasToken() on the receiver to check
the availability of a token. If hasToken() returns false, it immediately returns from fire(). This is a
simple form of domain-polymorphism.

Figure 14. Interface automata model for an SDF consumer actor.

SDFConsumer

Figure 15. Interface automaton for a domain-polymorphic consumer actor.

PolyConsumer

In Ptolemy II, actors interact with the director and the receivers of a domain. In figures 14 and
15, the block arrows on the left side denote the interface with the director, and the ones on the
right side denote the interface with the receiver. As discussed in section 4, the implementation of
the director and the receiver determines the semantics of component interaction in a domain,
including the flow of control and the communication protocol. If we use an interface automaton to
model the combined behavior of the director and the receiver, this automaton is then the type sig-
nature for the domain. Figure 16 shows such an automaton for the SDF domain. Here, p and pR
represent the call and the return of the put() method of the receiver, they are abstracted out as an
internal transition p_pR in the figure. Compared with the SDFdomain automaton in one of our
earlier reports [LeX01], which has p and pR as separate input and output transitions, the automa-
ton in figure 16 is the projection of the automaton in [LeX01] onto SDFConsumer, with the inter-
nal transitions combined. This automaton encodes the assumption of the SDF domain that the
consumer actor is fired only after a token is put into the receiver1.

The type signature of the DE domain is shown in figure 17. In DE, an actor may be fired with-
out a token being put into the receiver at its input. This is indicated by the transition from state 0
to state 7. Figures 16 and 17 also reflect the fact that both of the SDF and the DE domains have a

1 This is a simplification of the SDF domain, since an actor may require more than one token to be put in the receiver before it is
fired. This simplification makes our exposition clearer, but otherwise makes no material difference.

Figure 16. Type signature of the SDF domain.

SDFDomain

Figure 17. Type signature of the DE domain.

DEDomain

single thread of execution, so the hasToken() query may happen only after the actor is fired but
before it calls get(), during which time the actor has the thread of control.

CSP and PN are two domains in Ptolemy II in which each actor runs in its own thread. Figures
18 and 19 give the type signature of these two domains. These automata are simplified from the
true implementation in Ptolemy II. In particular, CSPDomain omits conditional rendezvous,
which is an important feature in the CSP model of computation.

In CSP, the communication is synchronous; the first thread that calls get() or put() on the
receiver will be stalled until the other thread calls put() or get(). The case where get() is called
before put() is modeled by the transitions among the states 1, 3, 4, 5, 10. The case where put() is
called before get() is modeled by the transitions among the states 1, 6, 8, 9, 10.

In PN, the communication is asynchronous. So the put() call always returns immediately, but
the thread calling get() may be stalled until put() is called. The case where get() is called first in
PN is modeled by the transitions among the states 1, 3, 5, 10 in figure 19, while the case where
put() is called first is modeled by the transitions among the states 1, 6, 9, 10.

Figure 18. Type signature of the CSP domain.

CSPDomain

Figure 19. Type signature of the PN domain.

PNDomain

Given an automaton modeling an actor and the type signature of a domain, we can check the
compatibility of the actor with the communication protocol of that domain by composing these
two automata. Type checking examples will be shown below in section 5.3.

5.2 Behavioral-Level Type Order and Polymorphism
If we compare the domain automata described in the previous section, we can see that they are
closely related. This relationship can be captured by the alternating simulation relation of inter-
face automata. In particular, there is an alternating simulation relation from SDF to DE, from PN
to DE, and from CSP to DE. Also, there are alternating simulation relations between any pair of
automata among SDF, PN, and CSP, in any direction. This is shown by the directed graph in fig-
ure 20. From a type system point of view, the alternating simulation relation denoted in this figure
is the subtyping relation. For example, SDF is a subtype of DE, and SDF and PN are subtypes of
each other. This subtyping relation can help us design actors that can work in multiple domains.
According to the theorem in section 2.3, if an actor is compatible with a certain domain D, then
the actor is also compatible with the subtypes of D. Therefore, this actor is domain polymorphic.

In this formulation, the subtyping relation is not anti-symmetric. That is, two distinct types can
be subtypes of each other. This is different from some other type system, such as the data type
system in Ptolemy II [XiL00]. When the subtyping relation is anti-symmetric, the subtyping rela-
tion induces a partial order. But we do not have a partial order in figure 20. However, if we com-
bine the strongly connected components (SCC) into one node, the component graph becomes a
partial order. In figure 20, there is one SCC consisting of SDF, PN, and CSP. The partial order
induced by the component graph is shown in figure 21. In this figure, we also added a top and a
bottom element. They represent possible domain behavior in extreme cases. One possible design
of these two automata is shown in figure 22. In this figure, both automata have a single state. The
BOTTOM automaton has all the input transitions, and the TOP automaton has all the output tran-
sitions. We will discuss these two automata further in section 6.3.

Figure 20. A directed graph showing the alternating simulation relation among domain types.

DE

SDF

CSP PN

Figure 22. Top and Bottom of the behavioral type order.

TOP BOTTOM

When studying the compatibility with actors, the behavioral type order gives a good descrip-
tion for the relation among various behavioral types. From figure 21, it is evident that if an actor is
compatible with DE, it is also compatible with any of SDF, PN, and CSP. Also, the TOP automa-
ton has an alternating simulation relation from all the domain-specific automata. So if an actor is
compatible with this automaton, it is compatible with all the domains.

5.3 Type Checking Examples
Let’s perform a few type checking operations using the actors and domains in the earlier sections.
To verify that the SDFConsumer in figure 14 can indeed work in the SDFDomain, we compose it
with the SDFDomain automaton in figure 16. The result is shown in figure 23. As expected, the
composition is not empty so SDFConsumer is compatible with SDFDomain.

Now let’s compose DEDomain with SDFConsumer. The result is an empty automaton shown
in figure 24. This is because the actor may call get() when there is no token in the receiver, and
this call is not accepted by an empty DE receiver. The exact sequence that leads to this condition

Figure 21. An example of behavioral-level type order.

SDF/PN/CSP

DE

TOP

BOTTOM

Figure 23. Composition of SDFDomain in figure 16 and SDFConsumer in figure 14.

SDFDomain_SDFConsumer

Figure 24. Composition of DEDomain in figure 17 and SDFConsumer in figure 14.

DEDomain_SDFConsumer

is the following: first, both automata take a shared transition fC. In this transition, DEDomain
moves from state 0 to state 7, and SDFConsumer moves from state 0 to state 1. At state 1, SDF-
Consumer issues g, but this input is not accepted by DEDomain at state 7. So the pair of states (7,
1) in DEDomain⊗SDFConsumer is illegal. Since this state can be reached from the initial state (0,
0), the initial state is pruned out from the composition. As a result, the whole composition is
empty. This means that the SDF consumer cannot be used in the DE Domain.

The PolyConsumer in figure 15 checks the availability of a token before attempting to read
from the receiver. By composing it with DEDomain, we verify that this actor can be used in the
DE Domain. This composition is shown in figure 25. Since SDFDomain is below DEDomain in
the behavioral type order of figure 21, we have also verified that PolyConsumer can work in the
SDF domain. Therefore, PolyConsumer is domain polymorphic. As a sanity check, we have com-
posed SDFDomain with PolyConsumer, and the result is shown in figure 26.

We have also checked that PolyConsumer and SDFConsumer are compatible with CSPDo-
main and PNDomain. For the sake of brevity, we do not include these compositions in this paper.

In Ptolemy II, there is a library of about 100 domain-polymorphic actors. The way that many
of these actors consume and process tokens can be modeled by the PolyConsumer automaton.

5.4 More Detailed Models for Ptolemy II Domains
In the previous sections, the domain automata are designed at a fairly abstract level. That is, they
model the combined behavior of a director and a receiver, and they only have the interface to the
consumer actor exposed. If we want to model the domains in a little more detail, we can model the
directors and receivers separately, and explicitly expose the producer interface. When we do so,

Figure 25. Composition of DEDomain in figure 17 and PolyConsumer in figure 15.

DEDomain_PolyConsumer

Figure 26. Composition of SDFDomain in figure 16 and PolyConsumer in figure 15.

SDFDomain_PolyConsumer

we will have more than two automata in the system, so we will need to have transient states in the
model.

Starting from the SDF again, figure 27 shows an SDF director for the producer/consumer
model in figure 13. Here, fP and fPR represent the firing of the producer actor and the return of
this fire() call. Obviously, the firing schedule in this simple model is just to fire the producer, fol-
lowed by the consumer, then repeat the cycle indefinitely.

Figure 28 shows an SDF receiver. This receiver is more general than the one described in SDF-
Domain in figure 16 in that it can hold multiple tokens. In particular, at state 2, where a put() call
is just returned, the receiver allows another put() call to come before get() is called. This is mod-
eled by the transition p from state 2 to state 1. Also, after a get() call, the receiver may not be
empty, so a transition t from state 3 may take the receiver back to state 2. Notice that this automa-
ton is non-deterministic, and it uses non-determinism to allow more flexible ordering between the
put() and get() calls without explicitly modeling the number of tokens in it. Also notice that states
1t, 3t, 4t, and 5t are transient, for reasons similar to the transient states in figure 7.

The composition of SDFDirector and SDFReceiver represents the behavior of the SDF
domain. This composition can be composed with a producer actor and a consumer actor. Figure
29 describes the behavior of a typical producer actor. It simply calls put() in its fire() method. As

Figure 27. An SDF director.

SDFDirector

Figure 28. An SDF receiver.

SDFReceiver

Figure 29. A producer.

Producer

a type checking example, we can compose SDFDirector, SDFReceiver, Producer, and SDFCon-
sumer together. We omit this composition here for the sake of brevity.

Now let’s look at the DE domain. Figure 30 and 31 show a DE director and a DE receiver,
respectively. Different from the SDFDirector, the DEDirector does not statically schedule the fir-
ing of the producer and consumer. Also, since actor execution in DE is scheduled based on the
time events occur, a token put into a receiver may not be immediately available for the consumer
until the simulation time reaches the time of the token, so we have a transition pR from state 1 to 0
in DEReceiver.

If we want to check the subtyping relation between SDF and DE, we can use the compositional
property of alternating simulation [deH01] to simplify the checking. According to this property, if
SDFDirector is a subtype of DEDirector, and SDFReceiver is a subtype of DEReceiver, we have
the composition of SDFDirector and SDFReceiver to be a subtype of the composition of DEDi-
rector and DEReceiver. Indeed, we have verified the relation between the directors and receivers,
so we know that above result holds. This is shown in figure 32.

Figure 30. A DE director.

DEDirector

Figure 31. A DE receiver.

DEReceiver

Figure 32. Using the compositional property to show that SDFDomain is a subtype of DEDomain.

DEDirector

SDFDirector

DEReceiver

SDFReceiver SDFDirector II SDFReceiver

DEDirector II DEReceiver

For the producer/consumer model, the director in the PN domain will create two threads to run
the producer and consumer, as shown in figure 33(a) and (b). The whole PN director is the com-
position of these two, as shown in figure 33(c). The receiver for the PN domain is shown in figure
34. It performs blocking read and non-blocking write. That is, if the get() call arrives before put(),
it blocks. But the put() call never blocks. This receiver also allows multiple put() calls before
get().

If we want to check the subtyping relation between PN and SDF, we can check whether there is
an alternating simulation between the directors and receivers of these two domains. Unfortu-
nately, they do not have the same relation as we had with the simple domain models in section
5.2. Here, the only alternating simulation we have is one from the SDFDirector to PNDirector.
This example shows that the subtyping relation depends on the design of the domain automata. In
the SDFReceiver automaton in figure 28, the hasToken() call returns false at state 4t, while the
PNReceiver in figure 34 returns true in the same state. This difference breaks the alternating sim-
ulation relation. However, this lack of alternating simulation does not mean that an SDF actor
cannot work in the PN domain. In fact, with respect to the communication protocol, any SDF
actor can work in the PN domain. It is just that the alternating simulation does not capture this
relation.

Although there is no alternating simulation from PNDirector to SDFDirector, there is actually
an alternating simulation when these automata are projected to the producer or consumer autom-
ata. Figure 35(a) and (b) show the projection of SDFDirector and PNDirector onto the Producer
in figure 29. We can verify that (1) There is an alternating simulation from PNDirectorToPro-
ducer to SDFDirectorToProducer; (2) SDFDirectorToProducer is compatible with Producer. So

Figure 33. PN director.
(a)

PNProducerDirector PNConsumerDirector

PNDirector

(b) (c)

Figure 34. A PN receiver.

PNReceiver

according to the result in section 3.2, we know that PNDirector is compatible with Producer. This
example shows that the projection automata can be used to expose some alternating simulation
relations when the original automata do not have this relation.

We skip the director and receiver automata for the CSP domain. The CSP director automaton is
the same as the PNDirector in figure 33, and the CSP receiver performs both blocking read and
blocking write.

6. Discussion

6.1 Reflection
So far, interface automata have been used to describe the operation of Ptolemy II components.

These automata can be used to perform compatibility checks between components. Another inter-
esting use is to reflect the component state in a run-time environment. For example, we can exe-
cute the automaton SDFConsumer of figure 14 in parallel with the execution of the actor. When
the fire() method of the actor is called, the automaton makes a transition from state 0 to state 1. At
any time, the state of the actor can be obtained by querying the state of the automaton. Here, the
role of the automaton is reflection, as realized for example in Java. In Java, the Class class can be
used to obtain the static structure of an object, while our automata reflect the dynamic behavior of
a component. We call an automaton used in this role a reflection automaton.

6.2 Trade-offs in Type System Design
The examples in sections 5.1 and 5.4 show that there is no canonical type representation because
behavioral types can be specified at different abstraction levels. These examples focus on the
communication protocol between one or two actors and their environment. This scope can be
broadened by including the automata of more actors and using an even more detailed domain
model in the composition. Also, properties other than the communication protocol, such as dead-
lock freedom in thread-based domains, can be included in the type system. However, these exten-
sions will increase the cost of type checking. So there is a trade-off between the amount of
information carried by the type system and the cost of type checking.

The previous examples also show that the subtyping relation among domain types can help
simplify type checking. However, because the alternating simulation relation is sensitive to the
design of the domain automata, we do not always have the same subtyping relations in different
design. In some cases, such as in section 5.4, we can increase the set of relations captured by using

Figure 35. Projection of SDFDirector and PNDirector to Producer.

SDFDirectorToProducer

PNDirectorToProducer

(a) (b)

the projection automata, but this is not always possible. So the trade-off between the amount of
information carried by the types and the amount of subtyping relations in the system also need to
be considered.

Another dimension of the trade-offs is static versus run-time type checking. The examples in
the last section are static type checking examples. If we extend the scope of the type system, static
checking can quickly become impractical due to the size of the composition. An alternative is to
check some of the properties at run time. One way to perform run-time checking is to execute the
reflection automata of the components in parallel with the execution of the components. Along
the way, we periodically check the states of the reflection automata, and see if something has gone
wrong.

These trade-offs imply that there is a big design space for behavioral types. In this space, one
extreme point is complete static checking by composing the automata modeling all the system
components, and check the composition. This amounts to model checking. To explore the bound-
ary in this direction, we did an experiment by checking an implementation of the classical dining
philosophers model implemented in the CSP domain in Ptolemy II. Each philosopher and each
chopstick is modeled by an actor running in its own thread. The chopstick actor uses conditional
send to simultaneously check which philosopher (the one on its left or the one on its right) wants
to pick it up. We created interface automata for the Ptolemy II components CSPReceiver, Philos-
opher, and Chopstick, and a simplified automaton to model conditional send. We are able to com-
pute the composition of all the components in a two-philosopher version of the dining philosopher
model, and obtain a closed automaton with 2992 states. Since this automaton is not empty, we
have verified that the components in the composition are compatible with respect to the synchro-
nous communication protocol in CSP. We also checked for deadlock inherent in the implementa-
tion, and are able to identify two deadlock states (states without any outgoing transitions) in the
composition, which correspond to the situation where all the philosophers are holding the chop-
sticks on their left and waiting for the ones on the right, and the symmetrical situation where all
philosophers are waiting for the chopsticks on their left.

Our goal here is not to do model checking, but to perform static type checking on a non-trivial
models. Obviously, when the model grows, complete static checking will become intractable due
to the well-known state explosion problem.

Another extreme point in the design space for behavioral types is to rely on run-time type
checking completely. For deadlock detection, we can execute the reflection automata in parallel
with the Ptolemy II model. When the model deadlocks, the states of the automata will explain the
reason for the deadlock. In this case, the type system becomes a debugging tool. The point here is
that a good type system is somewhere between these extremes. We believe that a system that
checks the compatibility of communication protocols, as illustrated in sections 5, is a good start-
ing point.

6.3 Top and Bottom
We have shown one possible design for the top and bottom elements of the behavioral type order
in figure 22. These two automata are very general in that they are not only the top and bottom ele-
ments of the partial order in figure 21, but also the top and bottom of the partial orders formed by
any set of automata with the same set of input and output transitions. In another word, there is an
alternating simulation relation from any automaton to the TOP automaton in figure 22, and an
alternating simulation relation from the BOTTOM automaton in figure 22 to any automaton with
the same inputs and outputs.

If we can design an actor that is compatible with the TOP automaton, then that actor will be
maximally polymorphic in that it will be able to work in any domain that may be created. How-
ever, it is easy to see that this is almost impossible. Since the TOP automaton may issue any out-
put at any time, no non-trivial actor can be compatible with it. This means that we cannot hope to
design a non-trivial actor that will be able to work in any environment.

On the other hand, the BOTTOM automaton is compatible with any actor automaton. For
example, the compositions of BOTTOM with the SDFConsumer or the PolyConsumer are shown
in figure 36. The two compositions are the same. Intuitively, since the BOTTOM automaton does
not have any output transition, it does not call the fire() method of the actor, so there is no
interaction between the BOTTOM automaton and the actor automaton.

The TOP and BOTTOM automata represent two extremes of the possible environments for
actors. The TOP is the most stringent environment in which no non-trivial actor can work, while
BOTTOM is the laxest environment in which an actor is not asked to do anything.

6.4 Related Work

6.4.1 Behavioral Types

In the concurrent object-oriented language community, there is a lot of ongoing work on type sys-
tems for parallel object languages and calculi. Some of the proposed systems have very similar
objectives as ours, namely, capturing the dynamic behavior of components. In particular, the type
model of Puntigam [Pun96] and the behavioral type system of Najm and Nimour
[NaN99][NNS99] both attempt to capture the communication behavior of components, and both
systems have a notion of subtyping that is conceptually similar to the alternating simulation rela-
tion.

The type model of Puntigam is designed for a language that is based on a combination of the
actor model [Agh86] and a process calculus with trace semantics. Similar to our model, objects
communicate by message passing. A message has the form c(o1, ..., om; v1, ..., vn). This can be
viewed as a method call with method name c, input parameters o1, ..., om, and output parameters
v1, ..., vn. A type trace is a sequence p1 ... pn of message prototypes, and a type trace set T is a pre-
fix-closed non-empty set of type traces. Here, the type trace sets are the type specifications of
active objects. It defines the sequences of messages that an object is prepared to handle, and the
clients of the objects are allowed to send message only according to exactly one type trace
selected from the set. The type trace set of a type τ is denoted trace(τ). Under this formulation, a
subtype is defined as:

A type σ is a subtype of a type τ (denoted by σ ≤ τ) if and only if for each type trace p1 ... pn ∈
trace(τ) there is a p1’ ... pn’ ∈ trace(σ) so that (for each ; with

 and

• (equal message identifiers);

Figure 36. Composition of BOTTOM and SDFConsumer or PolyConsumer.

BOTTOM_SDFConsumer or BOTTOM_PolyConsumer

1 i n≤ ≤
pi ci φi 1, … φi ki, ϕi 1, … ϕi li,, ,;, ,()= p′i c′i φ′i 1, … φ′i k′i, ϕ′i 1, … ϕ′i l′i,, ,;, ,()=

ci c′i=

• and for (contravariant input parameter types);

• and for (covariant output parameter types).

Similar to the alternating simulation relation we use for defining subtypes in our system, this
definition has contravariant input types and covariant output types.

However, there are several differences between this formulation and ours. First, a trace is a
global property in that a trace specifies a complete run of an object, while the simulation relation
is local in that it is a relation for each step of the run. Second, the subtyping definition here mixes
data typing issues with behavior. In particular, the last two conditions in the definition is essen-
tially the standard record subtyping rules in many data type systems [CAR97]. In our system, we
separate the data typing issues from behavioral typing and handle them in different ways. Third,
the trace set, which defines a language, is more general than an automaton. If the trace set is con-
strained to be a regular set, then it is equivalent to an automaton.

The behavioral type system presented in [NaN99] is closer to our system. This system is
designed for an object calculus which is a variant of the π-calculus [MPW92], with syntactic
sugar for method definition. Here, behavioral types specify the set of methods (services) an
objects supports. This set is dynamic since the set of supported methods may change after each
method call. For example, an object implementing a one place buffer has a put() and a get()
method for writing and reading data into and from the buffer. When the buffer is empty, the set of
supported methods includes only the put() method. After put() is called, the set includes only
the get() method, and so on. This dynamic behavior is specified using a labeled transition sys-
tem, where each transition is a method signature. Similar to our system, the definition of subtyp-
ing distinguishes the sending and receiving of messages. If a type X2 is a subtype of a type X1,
then all the receiving actions of X1 can be performed by X2, and all the sending actions of X2 can
be performed by X1. This is analogous to the alternating simulation relation of interface automata.
The formal definition of behavioral types, the transition system, and subtyping can be found in
[NaN99][NNS99]. In this system, the requirements for type compatibility are defined by compli-
cated type rules.

In both of the above two systems, the basic goal of typing is to ensure that an object does not
receive a method call that is not supported. This error condition is analogous to the error condition
that results in illegal states in the composition of interface automata. Compared with them, our
interface automata based system permits much easier type checking. Also, since interface autom-
ata can be easily described in bubble and arc diagrams, the type representation in our system is
easier to understand than the algebraic form used in both approaches. Another difference is that
the above two systems concentrate mostly on the communication between objects through mes-
sage passing, while our system also takes the execution control into consideration. Finally, it is
interesting to note the different terminologies used to describe the dynamic behavior of compo-
nents. Inspired by [NaN99], we call our description behavioral types, while it is called process
types in [Pun96], and we ourselves had previously called it system-level types [LeX01].

6.4.2 Component Interfacing

In hardware design, many people have proposed techniques of protocol synthesis to connect com-
ponents with different interfaces [COB92][COB95][EiP00][ETT98][OrB97][PRS98]. There are
two approaches to protocol synthesis. One is library or template based. For example, Eisenring
and Platzner [EiP00] develop a tool that provides a template and a corresponding generator

k′i ki≤ φi j, φ′i j,≤ 1 j k′i≤ ≤

li l′i≤ ϕ′i j, ϕi j,≤ 1 j li≤ ≤

method for each interface type. The other is to generate a converter from the two interfaces to be
connected. For example, Passerone et al. [PRS98] describe the communication protocols of the
two components to be interfaced by two finite state machines, and the converter is essentially the
product machine, with invalid states removed. Compared with this approach of component inter-
facing, our approach is to design polymorphic components with tolerant interfaces, so that they
can be used in different settings. Besides, there are two additional differences between our system
and the protocol synthesis techniques.

One difference is that behavioral types cover multiple models of computation, while protocol
synthesis usually concentrates on interfacing different implementations of one model of computa-
tion. For example, Passerone et al. [PRS98] focus on synchronous model (shared clock); Eisen-
ring and Platzner [EiP00] study dataflow models implemented by queues between component; in
[ETT98], Eisenring et al. design a system using synchronous dataflow; and in [OrB97], Ortega
and Borriello use a communication protocol with a non-blocking write behavior, which is similar
to the one in process networks.

Another difference is on the level of abstraction. Since design is a process of refinement, the
description of a component may exist at different levels. In [ETT98], Eisenring, et al. divide the
possible abstractions into two levels: abstract communication types and physical communication
types. Abstract communication types includes buffered versus non-buffered, blocking versus non-
blocking, synchronous versus asynchronous communication. Physical communication types
includes memory-mapped I/O, interrupt or DMA-transfer. In [BLO98], Borriello, et al. gave a
more contiguous categorization of interface levels: electrical, logical, sequencing, timing, data
transaction, packet, and message. The behavioral type work addresses the highest level in this
classification: different mechanisms for message passing. It covers the abstract communication
types. On the other hand, most work on protocol synthesis is at the hardware or architecture lev-
els. For example, reconfigurable computing with FPGA is targeted in [EiP00]; [PRS98] is about
RTL level interface synthesis; the problem of mapping a high-level specification to an architec-
ture is considered in [OrB97]; and a system to generate interface between a set of microprocessors
and a set of devices is described in [COB92][COB95].

The differences between our type system and the work in protocol synthesis make them com-
plementary to each other. They may be used at the different stages of the design process.

7. Conclusion and Future Work
We have proposed two extensions to the interface automata formalism. Transient states allow us
to model mutual exclusion easily, and projection automata expose alternating simulation between
two automata for a subset of their interfaces.

Based on the extended interface automata, we have described a type system that captures the
interaction dynamics in a component-based design environment. The interaction types and com-
ponent behavior are described by interface automata, and type checking is done through automata
composition. Our approach is domain polymorphic in that a component may be compatible with
multiple interaction types. The relation among the interaction types is captured by a behavioral
type order using the alternating simulation relation of interface automata. We have shown that our
system can be extended to capture more dynamic properties, and the design of a good type system
involves a set of trade-offs. Our experimental platform is the Ptolemy II design environment. All
the automata in this paper are built in Ptolemy II and their compositions are computed in software,
except that some manual layout is applied for better readability of the diagrams.

We also proposed using automata to do on-line reflection of component states. In addition to
run-time type checking, the resulting reflection automata can add value in a number of ways. For
example, in a reconfigurable architecture or distributed system, the state of the reflection autom-
ata can provide information on when it is safe to perform mutation. Reflection automata can also
be valuable debugging tools. This is part of our future work.

In addition to its usual use in type checking, our type system may facilitate the design of new
components or Ptolemy II domains. In Ptolemy II, domains can be combined hierarchically in a
single model. Using behavioral types, it might be possible to show that the composition of a
domain director and a group of actors behaves like a polymorphic actor in some other domains.
This is also part of our future research.

Acknowledgments
We thank Xiaojun Liu for his help in the implementation of interface automata in Ptolemy II.

The discussion with Winthrop Williams was very helpful. This work is part of the Ptolemy
project, which is supported by the Defense Advanced Research Projects Agency (DARPA), the
State of California MICRO program, and the following companies: Agilent, Cadence, Hitachi,
and Philips.

References
[Agh86] G. A. Agha, Actors: A Model of Concurrent Computation in Distributed Systems, The MIT Press, 1986.

[BCD02] S. S. Bhattacharyya, E. Cheong, J. Davis II, M. Goel, C. Hylands, B. Kienhuis, E. A. Lee, J. Liu, X. Liu,
L. Muliadi, S. Neuendorffer, J. Reekie, N. Smyth, J. Tsay, B. Vogel, W. Williams, Y. Xiong, and H. Zheng,
“Heterogeneous Concurrent Modeling and Design in Java,” Technical Memorandum UCB/ERL M02/23, EECS,
University of California, Berkeley, August 5, 2002. (http://ptolemy.eecs.berkeley.edu/publications/papers/02/
ptIIdesign/)

[BLO98] G. Borriello, L. Lavagno, and R. B. Ortega, “Interface Synthesis: A Vertical Slice from Digital Logic to
Software Components,” Proc. of International Conference on Computer Aided Design (ICCAD), San Jose, CA,
USA, Nov. 8-12, 1998.

[CAR97] L. Cardelli, “Type Systems,” The Computer Science and Engineering Handbook, CRC Press, 1997.

[CaW85] L. Cardelli and P. Wegner, “On Understanding Types, Data Abstraction, and Polymorphism,” ACM Com-
puting Surveys, Vol.17, No.4, Dec. 1985.

[COB92] P. Chou, R. B. Ortega and G. Borriello, “Synthesis of the Hardware/Software Interface in Microcontrol-
ler-Based Systems,” Proc. ICCAD, pp488-495, Nov. 1992.

[COB95] P. Chou, R. B. Ortega and G. Borriello, “Interface Co-Synthesis Techniques for Embedded Systems,”
Proc. of the Int. Conf. on Computer Aided Design, Nov. 1995.

[DaP90] B. A. Davey and H. A. Priestly, Introduction to Lattices and Order, Cambridge University Press, 1990.

[deH01] L. de Alfaro and T. A. Henzinger, “Interface Automata,” to appear in Proc. of the Joint 8th European Soft-
ware Engineering Conference and 9th ACM SIGSOFT International Symposium on the Foundations of Soft-
ware Engineering (ESEC/FSE 01), Austria, 2001.

[EiP00] M. Eisenring and M. Platzner, “Synthesis of Interfaces and Communication in Reconfigurable Embedded
Systems,” IEE Proc. Comput. Digit. Tech, 147(3), May 2000.

[ETT98] M. Eisenring, J. Teich and L. Thiele, “Rapid Prototyping of Dataflow Programs on Hardware/Software
Architectures,” Proc. 31st Annual Hawaii International Conference on System Sciences, 1998.

[Hoa78] C. A. R. Hoare, “Communicating Sequential Processes,” Communications of the ACM, 28(8), August
1978.

[Kah74] G. Kahn, “The Semantics of a Simple Language for Parallel Programming,” Proc. of the IFIP Congress
74, North-Holland Publishing Co., 1974.

[KaM77] G. Kahn and D. B. MacQueen, “Coroutines and Networks of Parallel Processes,” Information Processing
77, B. Gilchrist, editor, North-Holland Publishing Co., 1977.

[Lee02] E. A. Lee, “Embedded Software,” to appear in Advances in Computers (M. Zelkowitz, editor), Vol. 56,
Academic Press, London, 2002.

[LeM87] E. A. Lee and D. G. Messerschmitt, “Synchronous Data Flow,” Proc. of the IEEE, Sept., 1987.

[LeV01] E. A. Lee and P. Varaiya, Structure and Interpretation of Signals and Systems, Book Draft, U.C.Berkeley,
2001. (http://ptolemy.eecs.berkeley.edu/eecs20/supplements/master.pdf)

[LeX00] E. A. Lee and Y. Xiong, “System-Level Types for Component-Based Design,” Technical Memorandum
UCB/ERL M00/8, EECS, University of California, Berkeley, Feb. 29, 2000. (http://ptolemy.eecs.berkeley.edu/
publications/papers/00/systemLevel/)

[LeX01] E. A. Lee and Y. Xiong, “System-Level Types for Component-Based Design,” First Workshop on Embed-
ded Software, EMSOFT2001, Lake Tahoe, CA, USA, Oct. 8-10, 2001.

[LyT81] N. Lynch and M. Tuttle, “Hierarchical Correctness Proofs for Distributed Algorithms,” Proc. 6th ACM
Symp. Principles of Distributed Computing, pp 137-151, 1981.

[Mit84] J. C. Mitchell, “Coercion and Type Inference,” 11th Annual ACM Symposium on Principles of Program-
ming Languages, 175-185, 1984.

[NaN99] E. Najm, A. Nimour, “Explicit Behavioral Typing for Object Interface,” Semantics of Objects as Pro-
cesses, ECOOP’99 Workshop, Lisbon, Portugal, June, 1999.

[NNS99] E. Najm, A. Nimour and J.-B. Stefani, “Infinite Types for Distributed Object Interfaces,” Third IFIP Conf.
on Formal Methods for Open Object-Based Distributed Systems (FMOODS’99), Firenze, Italy, Feb., 1999.

[MPW92] R. Milner, J. Parrow, D. Walker, “A Calculus of Mobile Processes (Part I and part II),” Information and
Computation, 100:1-77, 1992.

[Ode96] M. Odersky, “Challenges in Type System Research,” ACM Computing Surveys, 28(4), 1996.

[OrB97] R. B. Ortega and G. Borriello, “Communication Synthesis for Embedded Systems with Global Consider-
ations,” Proc. of the 5th International Workshop on Hardware/Software Co-Design (Codes/CASHE’97), March
1997.

[PRS98] R. Passerone, J. A. Rowson and A. Sangiovanni-Vincentelli, “Automatic Synthesis of Interfaces between
Incompatible Protocols,” 35th Design Automation Conference, 1998.

[Pun96] F. Puntigam, “Types for Active Objects Based on Trace Semantics,” Proc. of the Workshop on Formal
Methods for Open Object-Oriented Distributed Systems (FMOODS’96), Paris, France, March, 1996.

[XiP98] H. Xi and F. Pfenning, “Eliminating Array Bound Checking Through Dependent Types,” Proc. of ACM
SIGPLAN Conf. on Programming Language Design and Implementation (PLDI ‘98), pp. 249-257, Montreal,
June, 1998.

[Xio02] Y. Xiong, “An Extensible Type System for Component-Based Design,” Ph.D. Thesis, Technical Memo-
randum, UCB/ERL M02/13, University of California, Berkeley, CA 94720, May 1, 2002.

[XiL00] Y. Xiong and E. A. Lee, “An Extensible Type System for Component-Based Design,” 6th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems, Berlin, Germany, March/
April 2000. LNCS 1785.

