
CAL Language Report
Specification of the CAL actor language

Johan Eker
Jörn W. Janneck

language version 1.0 — document edition 1

ERL Technical Memo UCB/ERL M03/48
University of California at Berkeley

December 1, 2003

CONTENTS CONTENTS

Contents

Contents 2

1 Introduction 6
1.1 Actors and actor composition . 6
1.2 Language design: goals and principles 8
1.3 Platform independence and compatibility 9

I Language description 12

2 Introductory remarks 13
2.1 Lexical tokens . 13
2.2 Typographic conventions . 15
2.3 Syntax rules . 15
2.4 Notational idioms . 15

3 Structure of actor descriptions 17
3.1 Namespaces and imports . 18
3.2 Time . 19

4 Data types 21
4.1 Objects, variables, and types . 21
4.2 Type formats . 23
4.3 Required types . 24
4.4 Structured objects and their types 25
4.5 Mutable objects and their types 26
4.6 Type framework . 27

5 Variables 28
5.1 Variable declarations . 28

5.1.1 Explicit variable declarations 29
5.2 Variable scoping . 30

Eker, Janneck CAL Language Report 2

CONTENTS CONTENTS

6 Expressions 35
6.1 Literals . 36
6.2 Variable references . 36

6.2.1 Old variable references . 36
6.3 Function application . 37
6.4 Field selection . 38
6.5 Indexing . 39
6.6 Operators . 39
6.7 Conditional expressions . 39
6.8 Introducing a local scope . 40
6.9 Closures . 40

6.9.1 Lambda-expressions and function closures 40
6.9.2 Proc-expressions and procedure closures 41
6.9.3 Function and procedure declarations 42

6.10 Comprehensions . 42
6.10.1 Simple collection expressions 43
6.10.2 Comprehensions with generators 43

6.11 Type assertion . 46

7 Statements 48
7.1 Assignment . 48

7.1.1 Simple assignment . 49
7.1.2 Field assignment . 49
7.1.3 Assignment with indices 49
7.1.4 Assigning to and from mutable variables 49

7.2 Procedure call . 51
7.3 Statement blocks (begin ... end) 52
7.4 If-Statement . 52
7.5 While-Statement . 52
7.6 Foreach-Statement . 53
7.7 Choose-Statement . 54

8 Actions 57
8.1 Input patterns, and variable declarations 58

8.1.1 Single-port input patterns 59
8.1.2 Multiport input patterns 60
8.1.3 Scoping of action variables 61

8.2 Output expressions . 62
8.3 Delays . 65
8.4 On action selection: guards and other activation conditions . . . 65
8.5 Initialization actions . 66

Eker, Janneck CAL Language Report 3

CONTENTS CONTENTS

9 Action-level control structures 68
9.1 Action tags . 69
9.2 Action schedules . 70

9.2.1 Finite state machine schedules 70
9.2.2 Regular expression schedules 71

9.3 Priorities . 73

II Semantics 75

10 Actor model 76
10.1 Preliminaries . 76
10.2 Time systems . 77
10.3 Actor transition systems . 79

III Appendices 81

A CAL language syntax 82
A.1 Actor . 82
A.2 Expressions . 83
A.3 Statements . 84
A.4 Actions . 85
A.5 Action control . 86

B Keywords 87

C Basic runtime infrastructure 90
C.1 Operator symbols . 90
C.2 Basic data types and their operations 91

C.2.1 Collection[T] —collections 91
C.2.2 Seq[T] —sequences . 93
C.2.3 Set[T] < Collection[T] —sets 94
C.2.4 List[T] < Collection[T], Seq[T] —lists 95
C.2.5 Map[K, V] —maps . 96
C.2.6 Number—numbers . 97
C.2.7 Character —characters 97
C.2.8 String < List[Character] —strings 97
C.2.9 Boolean —truth values 97
C.2.10 Null —the null value . 98

Index 100

Bibliography 111

Eker, Janneck CAL Language Report 4

First, we want to establish the idea that a computer language is not just a
way of getting a computer to perform operations but rather that it is a novel
formal medium for expressing ideas about methodology. Thus, programs must
be written for people to read, and only incidentally for machines to execute.
Second, we believe that the essential material to be addressed by a subject
at this level is not the syntax of particular programming-language constructs,
nor clever algorithms for computing particular functions efficiently, nor even
the mathematical analysis of algorithms and the foundations of computing, but
rather the techniques used to control the intellectual complexity of large software
systems.
[...]
Underlying our approach to this subject is our conviction that “computer sci-
ence” is not a science and that its significance has little to do with computers.
The computer revolution is a revolution in the way we think and in the way we
express what we think. The essence of this change is what might best be called
procedural epistemology—the study of the structure of knowledge from an im-
perative point of view, as opposed to the more declarative point of view taken
by classical mathematical subjects. Mathematics provides a framework for deal-
ing precisely with notions of ”what is.” Computation provides a framework for
dealing precisely with notions of “how to”

Harold Abelson, Gerald Jay Sussman
Structure and Interpretation of Computer Programs [2]

What a thing means is simply what habits it involves [...] there is no distinction
of meaning so fine as to consist in anything but a possible difference in practice.

Charles S. Pierce [13]

Eker, Janneck CAL Language Report 5

INTRODUCTION

Chapter 1

Introduction

This report describes CAL, an actor language created as a part of the Ptolemy
II project [1] at the UC Berkeley. It is intended primarily as a repository for
technical information on the language and its implementation and contains very
little introductory material. After a short motivation, we will outline the goals
and the guiding principles of the language design. We will also give a short
outline of the actor model, and the context that the actors written in CAL are
embedded into, describing the kinds of assumptions an actor may and may not,
in general, make about it.

1.1 Actors and actor composition
Actors. The concept of actor as an entity that is composed with other actors
to form a concurrent system has a rich an varied history—some important mile-
stones include [6], [9], [3], [4], [5]. A formal description of the notion of actor
underlying this work can be found in chapter 10, which is based on the work in
[10] and [7]. Intuitively, an actor is a description of a computation on sequences
of tokens (atomic pieces of data) that produces other sequences of tokens as
a result. It has input ports for receiving its input tokens, and it produces its
output tokens on its output ports.

The computation performed by an actor proceeds as a sequence of atomic
steps called firings. Each firing happens in some actor state, consumes a (pos-

firingsibly empty) prefix of each input token sequence, yields a new actor state, and
produces a finite token sequence on each output port.1

Several actors are usually composed into a network, a graph-like structure
composition
of actors

(often referred to as a model) in which output ports of actors are connected
to input ports of the same or other actors, indicating that tokens produced at
those output ports are to be sent to the corresponding input ports. Such actor

1The notion of actor and firing is based on the one presented in [10], extended by a notion of
state in [7].

Eker, Janneck CAL Language Report 6

INTRODUCTION 1.1 Actors and actor composition

networks are of course essential to the construction of complex systems, but we
will not discuss this subject here, except for the following observations:

• A connection between an output port and an input port can mean dif-
decoupling
from commu-
nication
model

ferent things. It usually indicates that tokens produced by the former are
sent to the latter, but there are a variety of ways in which this can happen:
token sent to an input port may be queued in FIFO fashion, or new tokens
may ’overwrite’ older ones, or any other conceivable policy. It is important
to stress that actors themselves are oblivious to these policies: from an
actor’s point of view, its input ports serve as abstractions of (prefixes of)
input sequences of tokens, while its output ports are the destinations of
output sequences.

• Furthermore, the connection structure between the ports of actors does
decoupling
from actor
scheduling

not explicitly specify the order in which actors are fired. This order
(which may be partial, i.e. actors may fire simultaneously), whether it
is constructed at runtime or whether it can be computed from the actor
network, and if and how it relates to the exchange of tokens among the
actors—all these issues are part of the interpretation of the actor network.

The interpretation of a network of actors determines its semantics—it de-
communication
+ scheduling
= model of
computation

termines the result of the execution, as well as how this result is computed, by
regulating the flow of data as well as the flow of control among the actors in the
network. There are many possible ways to interpret a network of actors, and we
call any specific interpretation a model of computation—the Ptolemy project
focuses on exploring the issues of models of computation and their composition,
cf. [11, 12]. Actor composition inside the actor model that CAL is based on has
been studied in [8].

As far as the design of a language for writing actors is concerned,the above
definition of an actor and its use in the context of a network of actors suggest
that the language should allow to make some key aspects of an actor definition
explicit. These are, among others:

• The port signature of an actor (its input ports and output ports, as well
as the kind of tokens the actor expects to receive from or be able to send
to them.

• The code executed during a firing, including possibly alternatives whose
choice depends on the presence of tokens (and possibly their values) and/or
the current state of the actor.

• The production and consumption of tokens during a firing, which again
may be different for the alternative kinds of firings.

• The modification of state depending on the previous state and any input
tokens during a firing.

Eker, Janneck CAL Language Report 7

INTRODUCTION 1.2 Language design: goals and principles

Actor-like systems. It is often useful to abstract a system as a structure of
cooperating actors. Many such systems are dataflow-oriented, i.e. they consist
of components that communicate by sending each other packets of information,
and whose ability to perform computation depends on the availability of suf-
ficient input data. Typical signal processing systems, and also many control
system fall into this category.

Writing actors is hard. Writing an actor in a general-purpose programming
language is of course possible, but most or all of the information that may be
used to reason about its behavior is implicit in the program and can only be
extracted using sophisticated analysis, if this is at all feasible.

Furthermore, actors often need to be run on different platforms. For instance,
if actors are used in the design of an embedded system, they need to run in
a modeling and simulation environment (such as Matlab or Ptolemy) as well
as in the final product. Being able to use the same description of the actor
functionality in both cases improves productivity and reduces the probability of
errors.

1.2 Language design: goals and principles
Designing a programming language is an exercise in balancing a number of
sometimes contradicting goals and requirements. The following were the ones
that guided the design of CAL.

Ease of use. CAL is intended to be a programming language, not an inter-
mediate format or a representation for automatically generated code. Since we
want people to actually write code in it, the notation must be reasonably conve-
nient to write, with consistent syntax rules, keywords, and structures. Because
people make mistakes, it needs to be sufficiently redundant to allow effective er-
ror detection and localization, but simple and concise enough for frequent use,
especially in frequently used areas.

Minimal semantic core. In spite of being a full-fledged programming lan-
guage, we wanted to build CAL on a very small set of semantic concepts, for
a number of reasons. First of all, being able to describe a large part of the
full language through reductions to a smaller language makes the definition of
language semantics much easier. From a practical perspective, this simplifies
compiler construction—if there is a generic procedure that transforms any pro-
gram into an equivalent program in the core language, then all it takes in order
to compile the full language to any given platform is a code generator for the
core language. This led to the design of a number of core languages of CAL
(reflecting several levels of reduction) that much of the implementation of the
language is based on, and which will be described in another place.

Eker, Janneck CAL Language Report 8

INTRODUCTION 1.3 Platform independence and compatibility

Focus and specificity. CAL is a domain-specific language that is aimed at pro-
viding a medium for defining actors. It was very important to draw a clear
line between those pieces of functionality that were deemed to be part of an
actor definition and those that were not. For example, in addition to clearly
actor-specific structures such as actions and input/output patterns/expressions,
expressions and statements were considered to be essential to defining an actor.
On the other hand, there are many things that CAL explicitly does not con-
tain, such as facilities for defining new types, concepts for connecting actors, or
mechanisms to aggregate actors into composites. The fact that CAL is explic-
itly agnostic about these issues makes it possible to use the language in a wide
variety of contexts, which may provide very different designs in those areas.

Implementation independence and retargetability. Even though our first
target for CAL actors is the Ptolemy II platform, we want the language to
be retargetable, in the following two senses: First, we would like to be able
to take an actor written, say, for Ptolemy II and be able to compile it to
some other platform, say to some C code that runs against a different API.
Secondly, we would like to enable other people to embed CAL into entirely dif-
ferent, but still actor-like, contexts, which have different kinds of objects (and
types), different libraries, different primitive data objects and operators. Here,
we would not necessarily try to reuse the actor libraries written for other plat-
forms (although some interesting subset might still be sufficiently generic to be
reusable)—instead, we would reuse the CAL framework, i.e. its infrastructure
such as parsers, transformers and annotators, verification and type checking,
code generation infrastructure etc. This is why CAL does not have a type sys-
tem of its own, but relies on the environment to provide one (cf. section 4 for
more information). We hope that this will allow the use of CAL in a very wide
range of contexts, from full-fledged component models (such as JavaBeans) to
very resource-constraint embedded platforms.

Making relevant design knowledge explicit and manifest. The key goal of
CAL is to enable the author of an actor to express some of the information about
the actor and its behavioral properties that are relevant to using the actor (e.g.
the verify its appropriate use inside a model, or to generate efficient code from
it), but that would be only implicit in a description of the actor in a ’traditional’
programming language such as C or Java.

1.3 Platform independence and compatibility
CAL is intended to be adaptable to a variety of different platforms. There are

notions of
platform
independence

a number of ways to interpret the term ’platform independence’, and since this
is a very important aspect of the design of CAL, we will discuss our approach
to this issue in this section.

For example, it could mean that code written in a language can be run on a
code
portability

Eker, Janneck CAL Language Report 9

INTRODUCTION 1.3 Platform independence and compatibility

variety of platforms (which is the interpretation chosen, e.g., in the implemen-
tation of the Java programming language). One common approach to achieve
code independence would be to define a virtual platform that promises to be
implementable in various environments. If this platform is a runtime platform
(rather than a source-code level API), this makes not only the source code, but source vs

target code
portability

also of the compiled target portable across platforms. This has the obvious ad-
vantage of (at least potentially) making every piece of code that is ever written
against the virtual platform portable to any implementation, increasing reuse
and avoiding fragmentation of the user base. There are, however, downsides to
this approach. First, it requires a delicate balance between including all possi-
bly desirable features and selecting those that can be implemented on a wide
variety of platforms. If the target platforms are reasonably similar, this may
not be a problem, but to the extent that the targets vary, some of them may
prevent the inclusion of features that would be very useful on others, resulting
in a greatest common denominator design. Second, requiring code and APIs to
be independent of any specific platform also makes it harder or impossible to
take advantage of platform-specific features.

Another interpretation of the term focuses on the language and its concepts,
language
portability

rather than the code written in the language. The C language is an example of
this: it provides a set of basic concepts, but it leaves many details open to specific
implementations, such the sizes and representations of basic data types, and of
course the set of library functions used to create programs. As a result, C code
itself is not portable, but relies on the presence of a specific set of libraries, and
may rely on a specific representation of the data objects. Of course, techniques
exist to improve code portability, such as standardization of library sets, and
abstraction mechanisms that deal with different data representations. But the
general problem with this approach is, of course, that code written in a language
is not automatically portable. The advantage, however, is that the language as
well as code written in it may be tuned to exploit the specific features of a
platform.

The design of CAL tries to realize this latter form of portability. The reason
portability in
CAL

is that we intend the language to be used on wide variety of different platforms,
and that we do not believe that there is a single abstraction that does justice to
all of them—particularly because for some of them, performance of the generated
code is a very high priority.

Nonetheless, portability of source code as well as target code remains a
concern. We intend to improve source code portability by defining profiles

platform
profiles

for certain classes of platforms, which define things like type systems, basic
function and procedure libraries and the like. But these will be based on our
experiences with the language in various scenarios, and thus are a second step
in the development of the language and its environment. As for target code

targeting
existing
virtual
platforms

portability, it seems more reasonable to use existing infrastructure (such as the
Java VM, or the Common Language Runtime) wherever possible, rather than
developing one from scratch.

Eker, Janneck CAL Language Report 10

INTRODUCTION 1.3 Platform independence and compatibility

RATIONALE.
Throughout this report, selected aspects of the language design will be
discussed in these boxes, presenting the rationale for the decisions made in
the specific cases.
These discussions are mainly of interest to language implementors and peo-
ple interested in the language design. Users only interested in the mechanics
of the language may safely ignore them.

¶

µ

³

´

IMPLEMENTATION NOTE.
Similarly, discussions of implementation techniques, or aspects of the lan-
guage that require particular consideration when implementing the lan-
guage on some platform are set in these boxes.

Eker, Janneck CAL Language Report 11

Part I

Language description

Eker, Janneck CAL Language Report 12

INTRODUCTORY REMARKS

Chapter 2

Introductory remarks

Throughout this part, we will present fragments of CAL syntax along with
(informal) descriptions of what these are supposed to mean. In order to avoid
ambiguity, we will now introduce a few conventions as well as the fundamental
syntactic elements (lexical tokens) of the CAL language.

2.1 Lexical tokens
CAL has the following kinds of lexical tokens:

Keywords. Keywords are special strings that are part of the language syntax
and are consequently not available as identifiers. See B for a list of keywords in
CAL.

Identifiers. Identifiers are any sequence of alphabetic characters of either case,
digits, the underscore character and the dollar sign that is not a keyword. Se-
quences of characters that are not legal identifiers may be turned into identifiers
by delimiting them with backslash characters.

Identifiers containing the $-sign are reserved identifiers. They are intended
to be used by tools that generate CAL program code and need to produce
unique names which do not conflict with names chosen by users of the language.
Consequently, users are discouraged from introducing identifiers that contain the
$-sign.

Operators. Operators are written as any string of characters !, @, #, $, %, ,̂
&, *, /, +, -, =, <, >, ?, ∼, —. In addition to these strings, a few keywords are
used as operators. The set of operators in CAL is extensible, different platforms
may augment the set of operators. The language itself defines only a small set
of operators—see appendix C.1 for a list of predefined operators.

Eker, Janneck CAL Language Report 13

INTRODUCTORY REMARKS 2.1 Lexical tokens

Delimiters. These are used to indicate the beginning or end of syntactical
elements in CAL. The following characters are used as delimiters: (,), {, }, [,],
:.

Comments. Comments are Java-style, i.e. single-line comments starting with
“//” and multi-line comments delimited by “/*” and “*/”.

Numeric literals. CAL provides two kinds of numeric literals: those represent-
ing an integral number and those representing a decimal fraction. Their syntax
is as follows:1

Integer → DecimalLiteral | HexadecimalLiteral | OctalLiteral

Real → DecimalDigit { DecimalDigit } ’.’ { DecimalDigit } [Exponent]
| ’.’ DecimalDigit { DecimalDigit } [Exponent]
| DecimalDigit { DecimalDigit } Exponent

DecimalLiteral → NonZeroDecimalDigit { DecimalDigit }
HexadecimalLiteral→ ’0’ (’x’|’X’) HexadecimalDigit { HexadecimalDigit }
OctalLiteral → ’0’ { OctalDigit }
Exponent → (’e’|’E’) [’+’|’-’] DecimalDigit { DecimalDigit }
NonZeroDecimalDigit → ’1’|’2’|’3’|’4’|’5’|’6’|’7’|’8’|’9’

DecimalDigit → ’0’| NonZeroDecimalDigit

OctalDigit → ’0’|’1’|’2’|’3’|’4’|’5’|’6’|’7’|’8’

HexadecimalDigit → DecimalDigit
| ’a’|’b’|’c’|’d’|’e’|’f’
| ’A’|’B’|’C’|’D’|’E’|’F’

RATIONALE.
The reason for allowing identifiers to essentially be any sequence of charac-
ters (by providing an ’escaped’ identifier syntax) is that CAL is intended to
interoperate with as many other languages as possible, and therefore cannot
assume any particular identifier syntax. We expect that most applications
will be using C/C++/Java-style host environments, and thus the lexical
conventions of CAL are very similar to those found in these languages. But
we did not want to exclude other environments just by a too restrictive
choice of the identifier space.

1In contrast to all other grammar rules in this report, the following rules do not allow whites-
pace between tokens.

Eker, Janneck CAL Language Report 14

INTRODUCTORY REMARKS 2.2 Typographic conventions

2.2 Typographic conventions
In syntax rules, keywords are shown in boldface, while all other literal symbols
are enclosed in single quotes.

In examples, CAL code is represented monospaced if it is to be read literally.
Placeholders inside CAL code, such as for expressions, variables, statements and
so forth, are set in italics, as e.g., E, v, and S.

2.3 Syntax rules
We use a form of BNF to describe the syntax rules. Literal elements are put in
quotes (in the case of symbols and delimiters), or set in boldface (in the case
of keywords). An optional occurrence of a sequence of symbols A is written as
[A], while any number of consecutive occurrences (including none) are written
as {A}. The alternative occurrence of either A or B is expressed as A | B.

We often use plural forms of non-terminal symbols without introducing them
explicitly. These are supposed to stand for a comma-separated sequence of at
least on instance of the non-terminal. E.g., if A is the non-terminal, we might
use As in some production, and we implicitly assume the following definition:

As → A { ’,’ A }

In the examples we will give in this report, we will assume the ’usual’ inter-
pretation of expression literals and mathematical operators, even though strictly
speaking these are not part of the language and depend on the environment. A
specific implementation of CAL may not have these these operators, or interpret
them or the literals in a different manner.

2.4 Notational idioms
Like most programming languages, CAL involves a fair number of syntactical
constructs that need to be learned and understood by its users in order to use
the language productively. The effort involved in gaining familiarity with the
language can be a considerable impediment to its adoption, so it makes sense
to employ general guidelines for designing the syntax of constructs, which allow
users to make guesses about the syntax if they are unsure about the details of a
specific language construction. We call these guidelines, which define the style
of a language, its notational idioms.

The following is a list of notational idioms guiding the design of CAL’s lan-
guage syntax. Not all of them may hold true all the time, but we tried to
conform to them whenever reasonable.

Eker, Janneck CAL Language Report 15

INTRODUCTORY REMARKS 2.4 Notational idioms

Keyword constructs. Many constructs in CAL are delimited by keywords
rather than more symbolic delimiters—such constructs are called keyword con-
structs. Examples of these would be lambda-expressions (see section 6.9.1).
Other constructs are delimited by symbols (e.g. comprehensions, see section
6.10), or are at least partially lacking delimiters (such as assignments, which
begin with a variable name, see section 7.1).

Alternative end markers. Every keyword construct ends with either the key-
word end or the keyword that consists of appending the opening keyword to
end. For instance, a lambda-expression can either be written

lambda (x) : x * x end
or alternatively

lambda (x) : x * x endlambda

Expression head/body separator. Composite expressions often consist of the
opening keyword, a head, a separator, the body, and the closing end marker
keyword. In such expressions, the separator is usually the ’:’-character, as in
the following examples:

let x = f(k) : g(x, x) end
or

lambda (x) : x + x end

Statement head/body separator. Many statements have a similar structure as
the one for expressions. For statements, the keywords do or begin are used as
a separator:

while n > 0 do k := f(k); n := n - 1; end
or

procedure p (x) begin
println("Result: " + x.toString());

end

Eker, Janneck CAL Language Report 16

STRUCTURE OF ACTOR DESCRIPTIONS

Chapter 3

Structure of actor descriptions

Each actor description defines a named kind of actor. Actors may refer to
entities defined in the implementation context, which provides a hierarchical
namespace for these entities, see section 3.1 for details. Actor descriptions may
use import declarations to use parts of this namespace or the objects defined in
it as part of their global environment.

Actors are the largest lexical units of specification and translation. The basic
structure of an actor is this:

Actor → [Imports] actor ID
[’[’ TypePars ’]’] ’(’ ActorPars ’)’ IOSig [TimeClause] ’:’
{ VarDecl | Action | InitializationAction | PriorityBlock }
[ActionSchedule]
{ VarDecl | Action | InitializationAction | PriorityBlock }
(end|endactor)

TypePar → ID [’<’ Type]

ActorPar → [Type] ID [’=’ Expression]

IOSig → [PortDecls] ’==>’ [PortDecls]

PortDecl → [multi] [Type] ID

TimeClause → time Type

The header of an actor contains optional type parameters and actor parame-
ters, and its port signature. This is followed by the body of the actor, containing
a sequence of state variable declarations (section 5.1), actions (chapter 8), ini-
tialization actions (section 8.5), priority blocks (section 9.3), and at most one
action schedule (section 9.2).

Type parameters are variable symbols that are bound to types when the
type
parameters

actor is instantiated. They can be used like any other type inside the actor
definition. Each type parameter may be optionally bounded, i.e. they may be

type bounds

Eker, Janneck CAL Language Report 17

STRUCTURE OF ACTOR DESCRIPTIONS 3.1 Namespaces and imports

associated with some type. In this case, the actual type that this parameter is
instantiated to is required to be a subtype of the bound (including the bound
itself).

By contrast, actor parameters are values, i.e. concrete objects of a certain
type (although, of course, this type may be determined by a type parameter).

actor
parameters

They are bound to identifiers which are visible throughout the actor definition.
Conceptually, these are non-assignable and immutable, i.e. they may not be
assigned to by an actor.

¶

µ

³

´

IMPLEMENTATION NOTE.
A specific implementation such as the one in Ptolemy might change these
parameters, for example in response to user interaction during design. For
this to make sense in CAL, the implementation has to ensure the consistency
of the actor state with the new parameter values, which it usually does by
reinitializing the actor whenever one of its parameters is assigned a new
value.

The port signature of an actor specifies the input ports and output ports,
including their names, whether the port is a multiport or a single port, and the
type of the tokens communicated via the port. While single ports represent

single ports
vs. multiports

exactly one sequence of input or output tokens, multiports are comprised of any
number of those sequences (called channels), including zero.

3.1 Namespaces and imports
An actor description may contain free variables, i.e. references to variables not
defined inside the actor. Often, these are functions or procedures, but also types,
which are predefined as part of the respective implementation context. The
collection of all globally visible variable bindings is called the global environment

global
environment

of an actor.
However, implementation contexts may be very rich, providing a large num-

ber of functions, procedures, and types for actor writers to use. In such cases
hierarchical
context
namespace

it would be inappropriate to define all of these as global environment—it would
lead to a very large number of variable names, only a very small part of which
would actually be used by each actor definition. For this reason, implementa-
tion contexts may use a hierarchical namespace for naming these entities, where
each entity is denoted by a sequence of identifiers separated by dots (a so-called
qualified identifier). Actor specifications may use them as part of their global
environment by importing them into it. Effectively, one can think of import dec-

imports
assemble
global
environment

larations as constructing the global environment of an actor description, starting
with the default global environment, and adding bindings to it.

The qualified identifiers that denote each entity in the hierarchical namespace

qualified id =
subnamespace
+ local name

have two parts: the (possibly empty) sequence of identifiers up to and excluding

Eker, Janneck CAL Language Report 18

STRUCTURE OF ACTOR DESCRIPTIONS 3.2 Time

the last, and the last identifier. The first part is called the subnamespace or
package, while the second is called the local name. For example, in the qualified
identifiers X.Y.Z , XYZ, and java.util.HashMap , the subnamespaces are
X.Y , λ, and java.util , respectively,1 while the corresponding local names
are Z, XYZ, and HashMap.

An import declaration can either make a single entity available as the value
single vs
group imports

of a global variable, or the group of all entities inside the same subnamespace.

Import → SingleImport | GroupImport ’;’

SingleImport → import QualID [’=’ ID]

GroupImport → import all QualID

QualID → ID { . ID }

For a single import declaration, the qualified identifier denotes the entity to
be imported into the global environment. If the optional identifier following it
after an ’=’ is omitted, the entity denoted by the qualified identifier is imported
under its local name. For instance, the import declaration
import A.B.C;
imports the entity denoted by A.B.C under the name C into the global envi-
ronment. If an identifier is specified, it will be the name of the specified entity:
import A.B.C = D;
imports the same entity under the name D.

Group import declarations import entire groups of entities. In this case, the
qualified identifer specifies the subnamespace, and all entities in that subnames-
pace are imported under their local names. For example,
import all A.B;
imports A.B.C as C and A.B.E as E, if these are the two entities in that sub-
namespace.

3.2 Time
CAL supports an abstract notion of time as a way to relate the “duration” of

time
semantics
external to
actor

various actor firings to each other, and thus potentially control or constrain the
concurrency in a model that consists of several actors. It is essential to the
division of responsibility between an actor and its environment that the actor
itself does not interpret this time information, as it impacts the coordination
of more than one actor, rather than the execution of an isolated actor. For
this reason, time is purely declarative in CAL, and the language itself does not
attach any meaning to it whatsoever, other than it being a property of actor
transitions.

In section 10.2 the time system of an actor is introduced as an algebraic
time system:
tags, delays,
addition, zero
delay

1λ denotes the empty sequence of identifiers.

Eker, Janneck CAL Language Report 19

STRUCTURE OF ACTOR DESCRIPTIONS 3.2 Time

structure that has

• a set of time tags

• a set of time delays

• a (partial) order on the tag set

• an addition operation that adds delays to tags to yield larger tags

• a zero delay that is the neutral delay with respect to that addition.

The actor specification, however, only contains the delays. For this reason,
the optional time-tag in the actor header is only followed by one type, the type

delay typeof the delay values in action descriptions (see section 8.3). This type must have
the following properties:

• There must be a partial order that is compatible with the addition opera-
tion used to add the time delay to tags. More precisely, for any tag t, and
any two delays d1, d2, the following must hold:

d1 < d2 =⇒ (t + d1) < (t + d2)

• There must be a zero delay, say z, which defines the set of valid delays of
the specified type as follows. If d is of the delay type, it is valid iff z ≤ d.

The time-clause in the actor head functions as a type declaration for the
time-clause:
static type
declaration

delays. Its presence does not imply that any or all actions have non-zero delays,
and neither does its absence imply that all actions have zero delays—unless a
platform requires type information to be added, in which case an actor that
contained delay-clauses in actions but no time-clause would not typecheck and
hence not be well-formed.

See section 8.3 on how to specify time delays in actions.

Eker, Janneck CAL Language Report 20

DATA TYPES

Chapter 4

Data types

CAL is optionally typed, i.e. it allows programmers to give each newly intro-
optionally
typed

duced identifier a type (see section 5.1 for more details on declaring variables),
but it does not require it, in which case the identifier is said to be untyped.
In general, the type system is considered part of the external environment that
we try to keep CAL actor specifications orthogonal to. In this chapter we will
therefore discuss primarily the syntax provided for writing types, leaving the
concrete interpretation to the description of CAL implementations on individ-
ual platforms.

However, CAL does assume a few basic types (some of which are parametric),
minimal type
system

viz. those that are used as part of some language constructions. There are also
some framework rules on how to type checking/inference is to be conducted,
which will be discussed in section 4.6.

4.1 Objects, variables, and types
In general, there are really two kinds of types—the types with which variables
are declared (variable types),1 and the types of runtime objects (object types).
In most languages, these are either the same sets, or there is a significant overlap.
However, even in common languages, these sets are not identical: in Java, e.g.,
abstract classes and interfaces are only variable types, never the types of objects.

1We use variable here to mean any name inside the language, including parameters etc.

Eker, Janneck CAL Language Report 21

DATA TYPES 4.1 Objects, variables, and types

RATIONALE.
Most programming languages either require explicit typing, or they do not
have constructs for expressing types as part of the program source. Some
languages perform type inference, i.e. they allow users to omit type dec-
larations as long as they can infer enough information from the context to
guarantee the safeness of the program.
Making types in CAL optional reflects our choice to allow for a wide range
of embeddings and applications of the language. CAL could thus be used
as a scripting language that is interpreted and completely untyped, or as
a language that is used to generate C code or hardware from, and which
requires complete typing.
Tools are free to reject insufficiently typed programs, or to ignore type
annotations if they are not helpful. Of course, tools should make a best
effort to infer types whenever they need to know a type that has not been
explicitly specified, so as to make actors as reusable as possible across
platforms. They should also try to check types whenever feasible, in order
to locate errors and to detect malformed actor definitions.

Each variable or parameter in CAL may be declared with a variable type.
If it is, then this type remains the same for the variable or parameter in the
entire scope of the corresponding declaration. Variable types may be related to
each other by a subtype relation, ≺, which is a partial order on the set of all

subtype
relation

variable types. When for two variable types t, t′ we have t ≺ t′, then we say
that t is a subtype of t′, and t′ is a supertype of t. Furthermore, a t2 may be
used anywhere a t′ can be used—as a consequence, variables of subtypes are

substitutabilitysubstitutable for those of supertypes.
It is important that each object has precisely one object type. As a conse-

objects of type
t

quence, object types induce an exhaustive partition on the objects, i.e. for any
object type t we can uniquely determine the ”objects of type t”.

¶

µ

³

´

IMPLEMENTATION NOTE.
Stating that each object has an object type does not imply that this type
can be determined at run time, i.e. that there is something like run-time
type information associated with each object. In many cases, particularly
when efficiency is critical, the type of an object is a compile-time construct
whose main use is for establishing the notion of assignability, i.e. for check-
ing whether the result of an expression may legally be stored in a variable.
In these scenarios, type information is removed from the runtime represen-
tation of data objects.

2More precisely, “a t” is an object whose object type is assignable to t, see below.

Eker, Janneck CAL Language Report 22

DATA TYPES 4.2 Type formats

For each implementation context we assume that there is a set TV of variable
types and TO of object types. They are related to each other by an assignability

assignabilityrelation ←⊂ TV × TO which has the following interpretation: for any variable
type tV and object type tO, tV ← tO iff an object of type tO is a legal value for
a variable of type tV .

The assignability relation may or may not be related to subtyping, but at a
minimum it must be compatible with subtyping in the following sense. For any
two variable types tV and t′V , and any object type tO:

subtyping and
assignabilitytV ≺ t′V ∧ t′V ← tO =⇒ tV ← tO

In other words, if an object type is assignable to a variable type, it is also
assignable to any of its supertypes.

4.2 Type formats
Even though the CAL language itself does not specify the meaning of most
types, it provides notation for expressing types, so actor writers may put this
information into their actor descriptions, and an implementation context may
use it. There are three basic ways to express types in CAL, and two more
constructs for expressing the types of procedural and functional closures (cf.
sections 6.9.1 and 6.9.2).

Type → ID
| ID ’[’ TypePars ’]’
| ID ’(’ [TypeAttr { ’,’ TypeAttr }] ’)’
| ’[’ [Types] ’−−>’ Type ’]’
| ’[’ [Types] ’−−>’ ’]’

TypeAttr → ID ’:’ Type
| ID ’=’ Expression

A type that is just an identifier either refers to a type parameter (if it occurs
in the type parameters list of the actor), or it denotes the name of some other
non-parametric type. Examples may be String , Integer .

The form T[T1, ..., Tn] is intended to stand for a parametric type T
taking the types Ti as parameters. Such a parametric type is also called a type
constructor. Many built-in types are of this kind, e.g. List[Integer] is a
list if elements of type Integer , or Map[String, Real] is a finite map from
keys of type String to values of type Real .

The next form can be thought of as a more general version of the previous
one, where the type constructor has named parameters that may be bound to
either types or values. For instance, the type Matrix[element: Real,
width = 4, height = 5] might be the type of all matrices of real numbers
of a certain size.

Eker, Janneck CAL Language Report 23

DATA TYPES 4.3 Required types

The type of a lambda closure is written as [T1, ..., Tn --> T] , where
the Ti are the argument types, and T is the return type. Similarly, the type
of a procedural closure is written as [T1, ..., Tn -->] , with the Ti again
being the argument types.

4.3 Required types
Required types are the types of objects created as the result of special language
constructions, usually expressions. The following is a partial list of the required
types in CAL, cf. the appendix C for more details on basic data types, their
properties, and the operations on them.

• Null —the type containing only the value null.

• Boolean —the truth values true and false .

• ChannelID —the data type comprising the identifiers of channels. Most
pseudotype
ChannelID

likely this will be a synonym for some other simple type, like the one of
integer or natural numbers.

• Collection[T] —a finite collection of elements of type T.

• Seq[T] —a sequence (finite or infinite) of elements of type T.

• List[T] —finite lists of elements of type T. Lists are subtypes of the cor-
responding sequences and also subtypes or the corresponding collections,
i.e.
List[T] < Seq[T] and List[T] < Collection[T]

• Set[T] —finite sets of elements of type T. Sets are subtypes of the corre-
sponding collections, i.e.
Set[T] < Collection[T]

• Map[K, V] —maps from keys of type K to values of type V.

In addition to these, the types of functional and procedural closures are, of
course, also built-in datatypes.

The choice of many fundamental types, such as those representing numeric
entities, as well as the operations on them is left to the environment. The only
built-in support for these types are the literals which are a result of the lexical
scanning of the actor text. Interpretation as well as type assignment to these
literals is left up to the environment. See section 6.1 for more details, including
a design rationale.

Eker, Janneck CAL Language Report 24

DATA TYPES 4.4 Structured objects and their types

4.4 Structured objects and their types
Many data objects contain other data objects—consider e.g. lists, which contain

composite/structured
objects

their elements. An object that contains other objects is called composite or
structured, and so is its type.

CAL provides two mechanisms for identifying a subobject inside a structured
object (in other words, specifying its location inside the composite): fields and
indices. The mechanism used to identify locations inside a composite, as well as
the fields and indices that are valid for specifying a location (see below), depend

locations =
fields ∪
indices

on the composite object and its type.
The location of a subobject can be used to either retrieve it from the com-

posite (see sections 6.4 and 6.5) or, in the case of mutable objects and types, to
replace the subobject with another object (see sections 4.5, 7.1.2, and 7.1.3).

Fields. Fields are names for subobjects inside a composite. Any given object
fields:
compile-time
locations

type provides a finite number of those field names, and using any other name
to identify a location inside the composite is an error. Since the names are
statically provided as part of the program text (as opposed to being computed
at runtime) it is possible to check statically whether a field name is permissible
for a given object. If A denotes the composite object, and f is the field name,
then

A.f
A.f

selects the subobject in that field. Another consequence of the fact that fields
are provided explicitly is that different fields may be associated with different
subobject types, i.e. they may be heterogeneous.

heterogeneous
field locationsIndices. Indexing into a composite object is a different mechanism for identi-
indices:
runtime
locations

fying a location inside it. Indices are a number of objects that can be computed
at runtime, and which can be though of as the coordinates of the location inside
of the composite. Which and how many indices are valid for a given object is
determined by the object. If A denotes the composite object, and E1, ..., En are
n valid indices, then

A[E1, ..., En]
selects the subobject at the specified location. Since indices are computed at
runtime, all indexed locations inside a composite object must be assumed to be

homogeneous
indexed
locations

of the same static type, i.e. they are homogeneous.

Example 1. A typical application of fields would be a type Complex with fields
real and imaginary .

Lists in CAL are indexed by the natural numbers, starting at 0. For instance,
the list [11, 7, 19] can be indexed with the indices 0, 1, and 2, so that e.g.

[11, 7, 19][1]
would yield the value 7. See section C.2.4 for details.

While natural numbers are very common indices, indexed composites are in
general not restricted to numeric indices, but can allow any kind of object for
the purpose. See section C.2.5 for details on how maps are indexed into.

indices of any
type

Eker, Janneck CAL Language Report 25

DATA TYPES 4.5 Mutable objects and their types

Example 2. A Map[K, V] from a key type K to a value type V accepts as in-
dices objects of type K, and indexing is simply the application of the map. Say
the map

map {"abc"->15, "def"->7 }
(of type Map[String, Integer]) can be indexed by a string as follows:

map {"abc"->15, "def"->7 }["abc"]
resulting in the value 15 .

The following CAL types are required to support indexing:

• Seq[T] —index type is the natural numbers, starting from 0.

• Map[K, V] —index type is K.

Abstractly, indexing is the invocation of a special function, the indexer of a
given datatype. The type of the resulting expression may depend on the number
and types of the indices, and of course also on the indexed object.

4.5 Mutable objects and their types
Some structured types allow the modification or mutation of an object, i.e.
changing the object at some location inside it. Such a type is called mutable,
and so is an object of that type.

Mutating objects without any restrictions would be a technique that would
render a program essentially unanalyzable in the general case. For this reason,
CAL imposes a number of constraints on the ability to use this feature, which
will be discussed in the context of mutable variables in sections 7.1.2 and 7.1.3.

However, CAL makes no guarantee that the various locations of an object are
orthogonal
locations

independent, i.e. that all other locations remain unaffected by an assignment.
A structured mutable type whose locations are independent is called free, its

free typeslocations are called orthogonal—all predefined types in CAL are of this kind if
they support mutation.

Example 3. A common non-orthogonal type might be Complex , the type of
complex numbers. Let us assume its objects are mutable, and each has four
locations, represented as fields: real , imag , modulus , and argument . If c is
a mutable variable containing a complex number, then

c.real := 4;
c.imag := 3;

would at the same time result in the modulus component to be set to 5, and
the argument to be set to arctan 4/3. Now the assignment

c.argument := 2;
can be interpreted as leaving the modulus unchanged, and modifying the
real and imag fields accordingly, viz. to 5 cos 2 and 5 sin 2, respectively.

Eker, Janneck CAL Language Report 26

DATA TYPES 4.6 Type framework

4.6 Type framework
Section 4.1 introduced two relations between types: the subtyping relation ≺
between variable types, and the assignability relation ← between variable types
and object types. It also required that the two relations be consistent with each
other in the sense that assignability to a variable type would imply assignability
to any of its supertypes.

This section introduces some simple properties that any type system pro-
vided by an implementation context must have. These properties, together with
the basic minimal type system presented in section 4.3, constitute the CAL type
framework.

Subtype ordering. The subtyping relation ≺ on the variable types is a partial
order, i.e. for any t1, t2, t3 ∈ TV the following holds:

1. Reflexivity: t1 ≺ t1

2. Anti-symmetry: t1 ≺ t2 ∧ t2 ≺ t1 =⇒ t1 = t2

3. Transitivity: t1 ≺ t2 ∧ t2 ≺ t3 =⇒ t1 ≺ t3.

Finite cover. For any variable type t, there is a unique finite, and possibly
finite set of
direct
supertypes

empty, set Supt of variable types which has the following properties:

1. t 6∈ Supt

2. ∀t′ ∈ Supt : t ≺ t′

3. ∀t′, t′′ ∈ Supt : t′ 6≺ t′′

4. ∀t′ : t ≺ t′ ⇒ ∃t′′ ∈ Supt : t′′ ≺ t′

The second condition ensures that the elements of Supt are all superclasses of
t. The third condition requires the set to be minimal. The third condition
requires it to be exhaustive: all proper supertypes of t are supertypes of at least
one element in Supt.

Least upper bound. For any two variable types t1, t2 ∈ TV there is a unique
finite set of
supertypes for
any pair of
types

finite, and possibly empty, set of variable types t1 t t2 which has the following
properties:

1. ∀t ∈ t1 t t2 : t1 ≺ t ∧ t2 ≺ t

2. ∀t′, t′′ ∈ t1 t t2 : t′ 6≺ t′′

3. ∀t : (t1 ≺ t ∧ t2 ≺ t) ⇒ ∃t′ ∈ t1 t t2 : t′ ≺ t

Again, the first condition ensures that all types in the set are indeed upper
bounds of the two types in question. The second condition requires them to be
minimal. The third condition requires the set to be exhaustive: all supertypes
of t1 and t2 that are not in that set are supertypes of a type that is.

Eker, Janneck CAL Language Report 27

VARIABLES

Chapter 5

Variables

bindingsVariables are placeholders for other values. They are said to be bound to
the value that they stand for. The association between a variable and its value
is called a binding.

CAL distinguishes between different kinds of bindings, depending on whether
assignable &
mutable
bindings

they can be assigned to (assignable variable binding), and whether the object
they refer to may be mutated (mutable variable binding—cf. sections 4.5 and
7.1.3).

This chapter first explains how variables are declared inside CAL source code.
It then proceeds to discuss the scoping rules of the language, which govern the
visibility of variables and also constrain the kinds of declarations that are legal
in CAL.

5.1 Variable declarations

declarationsEach variable (with the exception of those predefined by the platform) needs
to be explicitly introduced before it can be used—it needs to be declared or
imported (section 3.1). A declaration determines the kind of binding associated
with the variable it declares, and potentially also its (variable) type. There are
the following kinds of variable declarations:

• explicit variable declarations (section 5.1.1,

• actor parameters (chapter 3),

• input patterns (section 8.1),

• parameters of a procedural or functional closure (section 6.9).

Variables declared as actor parameters, in input patterns, or as parameters
of a procedural or functional closure are neither assignable nor mutable.

Eker, Janneck CAL Language Report 28

VARIABLES 5.1 Variable declarations

The properties of a variable introduced by an explicit variable declaration
depend on the form of that declaration.

5.1.1 Explicit variable declarations
Syntactically, an explicit variable declaration1 looks as follows:

VarDecl → [mutable] [Type] ID [(’=’ | ’:=’) Expression]
| FunDecl | ProcDecl

We will discuss function and procedure declarations (FunDecl and ProcDecl)
in section 6.9.3.

An explicit variable declaration can take one of the following forms, where T
is a type, v an identifier that is the variable name, and E an expression of type
T:

• T v—declares an assignable, non-mutable variable of type T with the
default value for that type as its initial value. It is an error for the type
not to have a default value.

• T v := E —declares an assignable, non-mutable variable of type T with
the value of E as its initial value.

• mutable T v := E —declares an assignable and mutable variable of
type T with the value of E as its initial value.

• mutable T v = E —declares an non-assignable and mutable variable of
type T with the value of E as its initial value.

• T v = E—declares a non-assignable, non-mutable variable of type T with
the value of E as its initial value.

Variables declared in any of the first four ways are called stateful variables,
stateful vs
stateless

because they or the object they are containing may be changed by the execution
of a statement. Variables declared in the last way are referred to as stateless
variables.

Explicit variable declarations may occur in the following places:

• actor state variables

• the var block of a surrounding lexical context

• variables introduced by a let-block

While actor state variables and variables introduced in a var-block can be
state variables as well as non-state variables, a let-block may only introduce
non-state variables.

1These declarations are called “explicit” to distinguish them from more “implicit” variable dec-
larations that occur, e.g., in generators or input patterns.

Eker, Janneck CAL Language Report 29

VARIABLES 5.2 Variable scoping

5.2 Variable scoping
The scope of a variable is the lexical construct that introduces it—all expressions
and assignments using its name inside this construct will refer to that variable
binding, unless they occur inside some other construct that introduces a variable

lexical scopingof the same name, in which case the inner variable shadows the outer one.
In particular, this includes the initialization expressions that are used to

initialization
expression

compute the initial values of the variables themselves. Consider e.g. the follow-
ing group of variable declarations inside the same construct, i.e. with the same
scope:

n = 1 + k,
k = 6,
m = k * n

This set of declarations (of, in this case, non-mutable, non-assignable variables,
well-formed
declaration

although this does not have a bearing on the rules for initialization expression
dependency) would lead to k being set to 6, n to 7, and m to 42. Initializa-
tion expressions may not depend on each other in a circular manner—e.g., the
following list of variable declarations would not be well-formed:

n = 1 + k,
k = m - 36,
m = k * n

More precisely, a variable may not be in its own dependency set. Intuitively,
dependency
set

this set contains all variables that need to be known in order to compute the
initialization expression. These are usually the free variables of the expression
itself, plus any free variables used to compute them and so on—e.g., in the last
example, k depended on m, because m is free in m - 36 , and since m in turn
depends on k and n, and n on k , the dependency set of k is {m, k , n}, which
does contain k itself and is therefore an error.

This would suggest defining the dependency set as the transitive closure
of the free variable dependency relation—which would be a much too strong
criterion. Consider e.g. the following declaration:

f = lambda (n) :
if n = 0 then 1 else n * f(n - 1) end

end

Here, f occurs free in the initialization expression of f , which is clearly
recursiona circular dependency. Nevertheless, the above definition simply describes a

recursive function, and should thus be admissible.
The reason why f may occur free in its own definition without causing a

problem is that it occurs inside a closure—the value of f need not be known
in order to construct the closure, as long as it becomes known before we use
it—i.e. before we actually apply the closure to some argument.

We will now define the dependency sets Iv and Dv of a variable v among a
set of variables V that are defined simultaneously in the same scope.

Eker, Janneck CAL Language Report 30

VARIABLES 5.2 Variable scoping

Definition 1 (Iv , Dv—the dependency sets of a variable v). Consider a set V
of variables v which are defined simultaneously, i.e. the intial value of each of
these variables defined by an expression Ev which is in the scope of all the vari-
ables in V . Let Fv be the set of free variables of Ev . As we are only interested
in the free variables in V , we will usually use the intersection Fv ∩ V .

The dependency set Dv is defined as the smallest set such that the following
holds:

(a) Fv ∩ V ⊆ Dv

(b)
⋃

x∈Dv

Dx ⊆ Dv

The immediate dependency set Iv of each variable v is defined as follows
immediate
dependency
setIv =

{
∅ for Ev a closure
Dv otherwise

Intuitively, Dv contains those variables in V on which the object bound to
v directly or indirectly depends. Iv is the set of variables whose values need to
be known when the object computed by Ev is created—for most expressions, it
is the same as Dv, but for closures (procedural or functional) this set is empty,
because there is no need to evaluate the body of the closure in order to construct
the closure object.2

Now we capture the notion of well-formedness of a set of simultaneously
defined variables V as a condition on the dependency sets as follows:

well-formed
declaration setDefinition 2 (Well-formed declaration set). A set of simultaneously declared

variables (a declaration set) V is well-formed iff for all v ∈ V

v /∈ Iv

Note that, as in the example above, a variable may occur free in its own
initialization expression, but still not be in its own immediate dependency set,
as this only includes those variables whose value must be known in order to
compute the value of the declared variable.

This notion of well-formedness is useful because of the following property:

Corollary 1 (No mutual dependencies in well-formed variable sets.). Given
a well-formed variable set V , for any two variables v1, v2 ∈ V , we have the
following property:

¬(v1 ∈ Iv2 ∧ v2 ∈ Iv1)

That is, no two variables ever mutually immediately depend on each other.

2Here we use the fact that closures can be constructed without the values of their free variables,
which is clearly an artifact of the way we envision closures to be realized, but it is a useful one.

Eker, Janneck CAL Language Report 31

VARIABLES 5.2 Variable scoping

The proof of this property is trivial, by contradiction and induction over the
definition of the dependency set (showing that mutual dependency would entail
self-dependency, and thus contradict well-formedness).

RATIONALE.
Strictly speaking, this definition of well-formedness is a conservative ap-
proximation to what might be considered well-formed variable declarations.
It is chosen so that (a) it allows commonly occurring circular dependen-
cies to be expressed and (b) it can be implemented without undue efforts.
But it is important to realize that it does declare some declaration sets
as erroneous which could easily be interpreted. For instance, consider the
following case:

f = lambda (x) :
if x <= 1 then 1 else x * g(x - 1) end

end,
g = f

According to the definitions above, both g ends up in its own immediate
dependency set, and thus these declarations are not well-formed.

This allows us to construct the following relation over a set of variables:

dependency
order relationDefinition 3 (Dependency relation). Given a set of variables V defined in the

same scope, we define a relation ≺ on V as follows:

v1 ≺ v2 ⇐⇒ v1 ∈ Iv2

In other words, a variable is ‘smaller’ than another according to this relation
iff it occurs in its dependency set, i.e. iff it has to be defined before the other can
be defined. The well-formedness of the declaration set implies that this relation
is a non-reflexive partial order, since variables may not mutually depend on each
other.

This order allows us to execute variable declarations in such a way that
immediate dependencies are always evaluated before the dependent variable is
initialized.

Example 4. Consider the following variable definitions:

a = f(x),
f = lambda (v) :

if p(v) then v else g(h(v)) end
end,

Eker, Janneck CAL Language Report 32

VARIABLES 5.2 Variable scoping

g = lambda (w) : b * f(w) end,
b = k

Note that f and g are mutually recursive.
The following lists the immediate dependencies and the free variable de-

pendencies of each variable above,3 along with their intersection with the set
{a, f, g, b}, which is the set V in this case:

v Fv Fv ∩ V Dv Iv

a {f, x} {f} {f, g, b} {f, g, b}
f {p, g, h} {g} {f, g, b} ∅
g {b, f} {b, f} {f, g, b} ∅
b {k} ∅ ∅ ∅

Now let us compute the dependency set Da of the variable a. We start with
the set

Fa ∩ V = {f}
Now we compute

(Fa ∪ Ff) = {f, g}
Then

(Fa ∪ Ff ∪ Fg) ∩ V = {f, g, b}
Finally, we reach a fixpoint at

Da = (Fa ∪ Ff ∪ Fg ∪ Fb) ∩ V = {f, g, b}

Similarly, we compute Df , Dg , and Db. The immediate dependency sets of
f and g are empty, because their initialization expressions are closures. The
immediate dependency sets of a and b are the same as their dependency sets,
which in the case of b is also empty, because it does not depend on any variable
in V . As a result of this analysis, we see that the variables f , g, and b may be
defined in any order, but all must be defined before a, as it depends on all of
them.

Example 5. Now consider the following slightly changed variable definitions,
with an additional dependency added to b:

a = f(x),
f = lambda (v) :

if p(v) then v else g(h(v)) end
end,

3We are disregarding here the implicit variable references that will be introduced when the
operators are resolved to function calls—strictly speaking, they would become part of Fv , but as
they are always referring to global variables, and would thus disappear from Fv ∩ V anyway, we
do not bother with them in the example.

Eker, Janneck CAL Language Report 33

VARIABLES 5.2 Variable scoping

g = lambda (w) :
b * f(w)

end,
b = a * k

Again, the following table lists the dependency sets:

v Fv Fv ∩ V Dv Iv

a {f, x} {f} {f, g, b, a} {f, g, b, a}
f {p, g, h} {g} {f, g, b, a} ∅
g {b, f} {b, f} {f, g, b, a} ∅
b {a, k} {a} {f, g, b, a} {f, g, b, a}

Now, computing Da proceeds as follows:

Fa ∩ V = {f}

(Fa ∪ Ff) ∩ V = {f, g}
(Fa ∪ Ff ∪ Fg) ∩ V = {f, g, b}

(Fa ∪ Ff ∪ Fg ∪ Fb) ∩ V = {f, g, b, a}
Da = (Fa ∪ Ff ∪ Fg ∪ Fb ∪ Fa) ∩ V = {f, g, b, a}

Obviously, in this case a ∈ Ia, thus the set of variable definitions is not
well-formed.

Eker, Janneck CAL Language Report 34

EXPRESSIONS

Chapter 6

Expressions

Expressions evaluate to a value and are side-effect-free, i.e. they do not change
no side effectsthe state of the actor or assign or modify any other variable. Thus, the meaning

of an expression can be described by the value it is evaluating to.
If the computation of an expression terminates, it results in a value, and

expressions
and types

that value has an object type. The precise value depends on the environment
surrounding the expression when it is evaluated. In general, the objects com-
puted by an expression in different environments may belong to different object
types. However, Using the properties of the type system outlined in section 4.6,
we can compute a set of least upper variable type bounds for each expression,
knowing the declared types of each of its free identifiers and the types of the
literals occurring in it. The object types of all objects ever computed by the
expression must be assignable to all of the variable types in that set.

The following is an overview of the kinds of expressions and expression
expression
syntax

syntaxes provided in CAL.

Expression → PrimaryExpression { Operator PrimaryExpression }
PrimaryExpression → [Operator] SingleExpression

{ ’(’ [Expressions] ’)’ | ’[’ Expressions ’]’ | ’.’ ID }
SingleExpression → [old] ID

| ExpressionLiteral
| ’(’ Expressions ’)’
| IfExpression
| LambdaExpression
| ProcExpression
| LetExpression
| ListComprehension | SetComprehension | MapComprehension
| TypeAssertionExpr

Eker, Janneck CAL Language Report 35

EXPRESSIONS 6.1 Literals

We will now discuss the individual kinds of expressions in more detail.

6.1 Literals
Expression literals are constants of various types in the language. They look

literals
describe
constants

as follows:

ExpressionLiteral → IntegerLiteral | DecimalFractionLiteral
| StringLiteral
| true | false | null

The type of true and false is Boolean , the type of null is Null .
The exact types of the other literals are determined by the environment, but

literal types
determined by
context

the intuition behind them is that they represent the integers, the real numbers,
and character strings, respectively.

RATIONALE.
We are not committing to particular types for the numeric literals because
we want to keep the requirements on the type system as weak as possible,
to allow for a wide range of implementations. For example, some implemen-
tations may have only integer numbers up to a specific word size (say, 32 or
64 bits), while others have variable-sized integers. Such an implementation
may want to assign a specific type to an integer literal depending on its
numeric size—e.g., it may make it an object of type Integer32 if it fits
into 32 bits, and of type Integer if it is larger than that.

6.2 Variable references
The expression used to refer to the value bound to a variable at any given point
during the execution is simply the name of the variable itself, i.e. an identifier.

6.2.1 Old variable references
The code inside an action may refer to the value of a variable at the beginning

assignable &
mutable
bindings

of the action by prefixing the variable name with the keyword old, as in the
following example:

Example 6. ...

Eker, Janneck CAL Language Report 36

EXPRESSIONS 6.3 Function application

sum := 0;

action [a] ==> [old sum / sum]
do

sum := sum + a;
end

...

The output expression refers to both the value of sum at the beginning of
old-
references:
state before a
firing

the firing as well as its value at the end of the firing. This code is equivalent to
the following:

...

sum := 0;

action [a] ==> [oldSum / sum]
var

oldSum = sum
do

sum := sum + a;
end

...

In other words, using old values of variables in an action introduces an im-
implicit
variable

plicit non-assignable, non-mutable variable (cf. section 7.1.4 for the implications
of the original variable being mutable).

Closures created inside an action may also refer to old variables, and the
old-references
and closures

meaning of this follows from the transformation above: They will always refer
to the value of the variable at the beginning of the firing that created them.

The old keyword may not be used outside of an action, or in front of a
variable that is not an assignable or mutable actor state variable.

6.3 Function application
Function applications have the following syntactic format:

FunctionApplication → Expression ’(’ Expressions ’)’

The first expression must evaluate to a function of the appropriate type
and arity. The expression inside the parentheses are the function arguments.
The value of the function application expression is the value computed by the
function when applied to the values of the argument expressions.

language imple-
mentation: the
art of
cheating
without
getting caught

Eker, Janneck CAL Language Report 37

EXPRESSIONS 6.4 Field selection

¶

µ

³

´

IMPLEMENTATION NOTE.
Functions may, in principle, be non-strict, i.e. evaluation of argument ex-
pessions may be deferred until their values are actually needed. The bounds
for implementations are defined only by an expression’s proper behavior
with respect to the modification of state. For example, consider the follow-
ing statements:

g := lambda (x) : lambda (y) : x + y end end;
a := 11;
f := g (a * a);
a := 7;
b := f(1);

Any correct implementation must ensure that b has the value 122 at the
end of this statement sequence. If it naively defers the evaluation of the
argument expression a * a until f is called, b will erroneously be assigned
the value 50. This, of course, does not mean that the argument expression
must be evaluated when g is called, but it must behave as if it were evalu-
ated in the state valid at the time of the call whenever its value is needed.
In this example, it could move the old value of a into the lambda-closure
and use it, rather than the current value of a, when it finally evaluates the
argument expression.
In other words, if an implementation chooses to employ some form of lazy
evaluation, the effect is only to give meaning to programs that would oth-
erwise not be valid, while not affecting the meaning of programs that do
evaluate under an eager implementation. Consider this example:

let
f = lambda (x, y) : x end,
g = lambda () : g() end

:
f(1, g())

end

In lazy implementations, this expression will yield 1, while in eager imple-
mentations it will be an error.

6.4 Field selection
A field selector expression extracts a sobobject from a composite object (see 4.4
for details on composite objects). The syntax is as follows:

FieldSelectorExpr → Expression ’.’ ID

Eker, Janneck CAL Language Report 38

EXPRESSIONS 6.5 Indexing

The result of this expression is the subobject of the value of the expression
that is contained in the field specified by the identifier.

6.5 Indexing
An indexing expression selects a subobject from a composite object (cf. section

indices define
location

4.4 for more details). Syntactically, indexing expressions are similar to function
applications, although they use square brackets for enclosing the arguments.
The general format is

IndexerExpr → Expression ’[’ Expressions ’]’

where the first expression must be of a type that supports an indexer, and
the expressions between the brackets must be indices specifying a valid location
for the given object. The type of an indexing expression is determined by
the indexer, which is different for each structured data type, and may differ
according to the number of indices and their types.

6.6 Operators

unary &
binary
operators

There are two kinds of operators in CAL: unary prefix operators and binary
infix operators. A binary operator is characterized by its associativity and
its precedence. In CAL, all binary operators associate to the left, while their
precedence is defined by the platform. Unary operators always take precedence
over binary operators.

Example 7.
a + b + c is always (a + b) + c .
#a + b is always (#a) + b .
a + b * c is a + (b * c) if * has a higher precedence than +, which is

usually the case (see also the appendix C.1).

Operators are just syntactical elements—they represent ordinary unary or
syntactical
sugar

binary functions, so the only special rules for operators are syntactical. In
general, the set of operators is defined by the implementation context, although
a small number of operators are predefined. These operators are represented
by keywords, as opposed to strings of symbols, which represent all the other
operators (cf. section 2.1).

6.7 Conditional expressions
The simple conditional expression has the following form:

Eker, Janneck CAL Language Report 39

EXPRESSIONS 6.8 Introducing a local scope

IfExpression → if Expression then Expression else Expression end

The first subexpression must be of type Boolean , and the value of the entire
expression is the value of the second subterm if the first evaluated to true , and
the value of the third subterm otherwise.

The type of the conditional expression is the most specific supertype (least
upper bound) of both, the second and the third subexpression. It is undefined
(i.e. an error) if this does not exist.

6.8 Introducing a local scope
In expressions, local variables are introduced using a let-construct. This is often
useful to factor out large subexpressions that occur several times.

LetExpression → let VarDecls ’:’ Expression (end|endlet)

The list of local definitions defines new identifiers and binds them to values.
The variables (which are non-mutable and non-assignable) are visible inside the
body expression. Its type is the type of the entire construct.

6.9 Closures
Closures are objects that encapsulate some program code along with the vari-

closure = code
+
environment

able context (its environment) that was valid when it was created. CAL distin-
guishes two kinds of closures, which differ in the kind of code they encapsulate:

• function closures (or simply functions) contain a parametric expression,
functions &
procedures• procedure closures (or just procedures) contain a parametric list of state-

ments.

The two kinds of closures are used in different contexts, and in different
ways—the application of a functional closure to (a tuple of) arguments is an
expression (cf. section 6.3), whereas the call of a procedural closure on (a tuple
of) arguments is a statement (cf. section 7.2).

6.9.1 Lambda-expressions and function closures

function =
expression +
environment

Function closures are the result of evaluating a lambda-expression. They
represent functions that are defined by some expression which is parameterized
and may also refer to variables defined in the surrounding context.

Eker, Janneck CAL Language Report 40

EXPRESSIONS 6.9 Closures

LambdaExpression → [const] lambda ’(’ [FormalPars] ’) [’−−>’ Type]
[var VarDecls] ’:’ Expression (end|endlambda)

FormalPar → [Type] ID

Applying function closures is side-effect free, i.e. their application (to argu-
function
application
side-effect-
free

ments) does not change the state. However, in general they may refer to stateful
variables, and thus may themselves depend on the assignment of variables in
their context, and thus be affected by side effects of other constructs.

invariant
function
closures

The const keyword identifies those function closures for which this is not
the case, i.e. which do not refer to variables whose values may change—such a
function is also called an invariant function (closure). It does not change the
behavior of the closure, i.e. removing it will not affect the value computed by
the closure. It is intended to serve as a declaration that expresses the program-
mers intention, and that may be checked by a compiler. It is an error for a
const lambda-closure to refer to assignable or mutable variables.

If the types of the formal parameters are T1 to Tn, respectively, and the
return type is T, then the type of the lambda expression is

[T1, ..., Tn --> T]
The type of an invariant function closure is a subtype of the corresponding

function closure type, and is written as
const [T1, ..., Tn --> T]

applying
functions −→
6.3

The only built-in operation defined on a function closure is its application
to a tuple of arguments, cf. section 6.3.

6.9.2 Proc-expressions and procedure closures
Procedure closures are somewhat similar to function closures, in that they en-

procedure =
statements +
environment

capsulate a piece of code together with the context in which it was defined.
However, in the case of procedure closures, this piece of code is a list of state-
ments, i.e. executing a procedure closure is likely to have side effects (as opposed
to the application of a function closure).

Syntactically, a procedure closure looks as follows:

ProcExpression → proc ’(’ [FormalPars] ’)’ [var VarDecls]
(do| begin) { Statement } (end|endproc)

If the types of the formal parameters are T1 to Tn, respectively, then the
type of the proc expression is

[T1, ..., Tn -->]
Since block closures can produce side effects, their execution cannot be part

calling
procedures
−→ 7.2

Eker, Janneck CAL Language Report 41

EXPRESSIONS 6.10 Comprehensions

of the evaluation of an expression. Executing a block closure is a fundamental
kind of statement, which is discussed in section 7.2.

6.9.3 Function and procedure declarations
One very common use for closures is the definition of functions or procedures
with a particular fixed name inside some scope, often the actor itself. This can
be done using the standard variable declaration syntax, as follows:

timestwo = lambda(x) : 2 * x end

However, since this use is so frequent, CAL provides special syntax that looks
a little more familiar and makes the definition of functions and procedures a little
easier. The above could also be written like this:

function timestwo (x) : 2 * x end

The general format for these constructs is as follows:

FuncDecl → function ID ’(’ [FormalPars] ’)’ [var VarDecls ’:’]
Expression end

ProcDecl → procedure ID ’(’ [FormalPars] ’)’ [var VarDecls (begin| do)]
{ Statement } end

The variable introduced by these declarations is non-assignable and non-
mutable.

6.10 Comprehensions

constructing
composite
objects

Comprehensions are expressions which construct one of the built-in com-
posite objects: sets, lists, or maps. There are two variants of comprehensions,
those with and those without generators. We will first focus on the simpler
ones without generators, and then turn to the more general comprehensions
with generators. The reason for this order of presentation is that the meaning
of comprehensions with generators will be defined by reducing them to simple
collection expressions.

Note. The Collection type is a supertype of both Set and List , but not
Map. In spite of this, we will use the term collection for maps as well in this
section, because the way they are constructed is very much the same as for sets
and lists. To avoid confusion, we will refer to sets and lists as proper collections
or Collection s if we want to distinguish them from maps.

Eker, Janneck CAL Language Report 42

EXPRESSIONS 6.10 Comprehensions

6.10.1 Simple collection expressions

simple com-
prehension:
enumerate
elements

Simple collection expressions just enumerate the elements of the set or list
and the mappings of the map, respectively. They are written as follows:

SimpleSetComprehension → ’{’ [Expressions] ’}’
SimpleListComprehension → ’[’ [Expressions [’|’ Expression]] ’]’

SimpleMapComprehension → map ’{’ [Mappings] ’}’

The elements of a set are not ordered, and each element occurs inside the
unordered set
vs ordered list

set at most once. If two or more element expressions evaluate to the same value,
they result in only one element inside the set.1 In contrast, the elements in a
list are ordered, and the same element may occur in it more than once. Also,
the list syntax allows a tail to be specified, which must be a list of the same
type that is appended to the list of the explicitly specified elements.

Example 8. If n is the number 10 , then the simple set expression
{n, n*n, n-5, n/2 }

evaluates to the set {10, 100, 5 }.
If s represents the list [1, 2, 3] , then the simple list expression

[4, 5, 6 | s]
is the list [4, 5, 6, 1, 2, 3] .

nondeterminism
in map
construction

Simple map expressions explicitly specify the mappings from keys to values.
Similar to the case of sets, if two key expressions result in the same value, only
one key/value mapping will be generated from them. If the corresponding value
expressions are not the same, one of the values will be chosen.

Example 9. Let again n be 10 . The map
map {n -> 1, n*n -> 2, n-5 -> 3, n/2 -> 4 }

evaluates to either map {10 -> 1, 100 -> 2, 5 -> 3 }
or to map {10 -> 1, 100 -> 2, 5 -> 4 }.

6.10.2 Comprehensions with generators

constructing
large
collections

Simple comprehension expressions only allow the construction of sets, lists,
or maps of a size that is directly correlated with the size of the expression. In
order to facilitate the construction of large or variable-sized collections, CAL
provides generators to be used inside an expression constructing a collection.
The syntax of the resulting general form of comprehensions looks as follows:

1For this reason, it is in general only possible to infer an upper bound on the number of elements
from a simple set expression, not the precise number of elements.

Eker, Janneck CAL Language Report 43

EXPRESSIONS 6.10 Comprehensions

SetComprehension → ’{’ [Expressions [’:’ Generators]] ’}’
ListComprehension → ’[’ [Expressions [’:’ Generators] [’|’ Expression]] ’]’

MapComprehension → map ’{’ [Mappings [’:’ Generators]] ’}’
Mapping → Expression ’->’ Expression

Generator → for [Type] ID [’,’ IDs] in Expression { ’,’ Expression }

generators &
filters

The generators, which begin with the for keyword, introduce new variables,
and successively instantiate them with the elements of the proper collection
after the in keyword. The expression computing that collection may refer to
the generator variables defined to the left of the generator it belongs to. If that
expression is of type Collection[T], the corresponding generator variable is of
type T unless declared otherwise.

The optional expressions following the collection expression in a generator
are called filters—they must be of type Boolean , and only variable bindings
for which these expressions evaluate to true are used to construct the collection.

Example 10. The expression {} denotes the empty set, while
{1, 2, 3 }

is the set of the first three natural numbers. The set
{2 * a : for a in {1, 2, 3 }}

contains the values 2, 4, and 6, while the set
{a : for a in {1, 2, 3 }, a > 1}

describes (somewhat redundantly) the set containing 2 and 3. Finally, the set
{a * b : for a in {1, 2, 3 },

for b in {4, 5, 6 }, b > 2 * a }
contains the elements 4, 5, 6, 10, and 12.

Writing the above as
generator
variable
scoping

{a * b : for a in {1, 2, 3 },
b > 2 * a, for b in {4, 5, 6 }}

is illegal (unless b is a defined variable in the context of this expression, in
which case it is merely very confusing!), because the filter expression

b > 2 * a
occurs before the generator that introduces b.

If the generator collection is a set rather than a list, the order in which
elements are extracted from it will be unspecified. This may affect the result in

element order
in generators

case of a list comprehension.

Example 11. Because lists are order-sensitive, the list
[a : for a in [1, 2, 3]]

is different from the list
[a : for a in [3, 2, 1]]

If the collection computed in a generator is not itself a list but a set, as in

Eker, Janneck CAL Language Report 44

EXPRESSIONS 6.10 Comprehensions

[a : for a in {1, 2, 3 }]
then the order of the elements in the resulting list will be indeterminate.

Generator semantics. In order to precisely describe the evaluation of a com-
for
vi,1, ..., vi,Mi

in
Ci,
Fi,1, ..., Fi,Ki

prehension that contains generators and filters, we need to introduce a few
symbols first. We call the original expression E. Removing all generators from
E results in the simple collection expression E′. Now E has N ≥ 0 genera-
tors. The i-th generator has Mi ≥ 1 variables, with names vi,1, ..., vi,Mi . The
collection expression of the i-th generator will be called Ci. Following the i-th
generator are Ki ≥ 0 filter expressions, which we call Fi,1, ..., Fi,Ki . Let Z de-
note the corresponding empty collection expression, i.e. {} for sets, [] for lists,
and map {} for maps. The tail expression of lists will be treated separately: we
replace [S|T] with [S] + T first, and then apply the following algorithm to the
tail-free list comprehension [S].

In the following, we define the meaning of generators in comprehensions
by replacing them with a number of previously described constructs, such as
function closures, function application, and conditional expressions. The key to
this replacement is a function $mapadd, which we will describe below.

syntactical
transforma-
tion of
generators

E ≡ G(1)

G(i) ≡
{

E′ i > N

let ai = Ci : GV (i, 1) end otherwise

GV (i, j) ≡
{

GF (i, 1) j > Mi

$mapadd(ai, lambda (vi,j) : GV (i, j + 1) end) otherwise

GF (i, k) ≡
{

G(i + 1) k > Ki

if Fi,k then GF (i, k + 1) else Z end otherwise

The ai are distinct and fresh variable symbols, i.e. they are mutually differ-
ent, and they also differ from any variable symbol occurring in the comprehen-
sion.

The $mapadd function takes two arguments, a collection and a unary func-
$mapadd:
Collection[T]
[T-->Set/List/Map[T]]

tion. It iterates over the elements of its first argument, and applies the function
to each element. The resulting values are added—for sets, this means it pro-
duces the union of all results, for lists the concatenation, and for maps the
map-union.

Eker, Janneck CAL Language Report 45

EXPRESSIONS 6.11 Type assertion

RATIONALE.
Of course, whether there exists a function $mapadd at all, and whether it

has this name will be implementation-dependent. The reason for choosing
a name with a $-sign is because users are discouraged from using the $-sign
for their identifiers, so that generated identifiers and internal names can be
formed without creating conflicts with names chosen by the user.

Example 12. The expression
$mapadd([1, 2, 3], lambda(x) : {x, x + 2 } end)

results in {1, 3 } + {2, 4 } + {3, 5 }, which is
{1, 2, 3, 4, 5 }

The expression
$mapadd([1, 2, 3], lambda(x) : [x, x + 2] end)

results in [1, 3] + [2, 4] + [3, 5] , which is
[1, 3, 2, 4, 3, 5]

The expression
$mapadd([1, 2, 3],

lambda(x): map {x->x*x, x+2->x } end)
results in map{1->1, 3->1 } + map{2->4, 4->2 } + {3->9, 5->3 }, which
is either

map{1->1, 2->4, 3->1, 4->2, 5->3 }
or

map{1->1, 2->4, 3->9, 4->2, 5->3 }

efficiency of
comprehen-
sion
implementa-
tions

¶

µ

³

´

IMPLEMENTATION NOTE.
The fact that we define the meaning of generators inside comprehensions

by replacing them with other constructs is not to suggest that this is a
good implementation strategy. Even though it simplifies the language im-
plementation, it is most likely very inefficient, introducing a lot of overhead
in the form of closure creation, function application, and many intermediate
collection objects that get added up to compute the final result.

6.11 Type assertion
A type assertion expression is a way to attach type information to an arbitrary

attaching type
information to
any
expression

expression inside the program code. Other than type assertions, the only ex-
pressions that the user explicitly provides type information for are variables,
viz. when they are declared. The types of all other expressions are inferred

Eker, Janneck CAL Language Report 46

EXPRESSIONS 6.11 Type assertion

from those. Depending on the type system, this inference may be more or less
precise, and it may or may not be sufficient to guarantee a safe execution of
the program code. In such cases, it might be useful to explicitly add a type
assertion into the code, either to detect that it will not hold at compile time, or
to be able to check it at runtime. The syntax looks as follows:

TypeAssertionExpr → ’(’ Expression ’::’ Type ’)’

At compile time, if types are checked and inferred, there are three possi-
compile-time
type checking

ble consequences of this construction depending on the type that the inference
yielded for the embedded expression.

1. The type can be shown to be a subtype of the asserted type. In this case,
the assertion is always true.

2. The type can be shown to not intersect with the asserted type. In this
case, objects computed by the expression will always fail to be of the
asserted type, and thus this expression is will always result in an error,
which can be reported at compile time.

3. If neither can be shown, the expression may or may not produce objects
of the asserted type. This results in three subcases:

(a) In a conservative system, an error will be signaled at compile time.

(b) The translator inserts a check that tests for compliance with the
runtime type
checks

asserted type and causes an error if an object computed by the ex-
pression fails this check.

(c) The translator does nothing based on the assumption that the as-
sertion implies that the expression will always produce the proper
values.

Eker, Janneck CAL Language Report 47

STATEMENTS

Chapter 7

Statements

The execution of an action (as well as actor initialization) happens as the execu-
tion of a (possibly empty) sequence of statements. The only observable effect of

statements
have“side-
effects”

a statement is a change of the variable assignments in its environment.1 Conse-
quently, the meaning of a statement is defined by how the variables in its scope
change due to its execution. CAL provides the following kinds of statements:

Statement → AssignmentStmt
| CallStmt
| BlockStmt
| IfStmt
| WhileStmt
| ForeachStmt
| ChooseStmt

7.1 Assignment
Assigning a new value to a variable is the fundamental form of changing the
state of an actor. The syntax is as follows:

AssignmentStmt → ID [Index | FieldRef] ’:=’ Expression ’;’

Index → ’[’ [Expressions] ’]’

FieldRef → ’.’ ID

1Other effects of statements, and indeed expressions, may include input/output operations, but
we will disregard them in this context as they are not directly observable from within the language.

Eker, Janneck CAL Language Report 48

STATEMENTS 7.1 Assignment

An assignment without an index or a field reference is a simple assignment,
while one with a field reference is a field assignment, and one with an index
is called an indexed assignment. Field assignments and indexed assignments
are also collectively referred to as mutations (cf. sections 4.4 and 4.5 for more
information on structured objects and mutability).

7.1.1 Simple assignment
In a simple assignment, the left-hand side is a variable name. A variable by
that name must be visible in this scope, and it must be assignable.

The expression on the right-hand side must evaluate to an object of a value
compatible with the variable (i.e. its type must be assignable to the declared

assignability
−→ 4.1

type of the variable, if any—see section 4.1). The effect of the assignment is of
course that the variable value is changed to the value of the expression. The
original value is thereby overwritten.

7.1.2 Field assignment
If a variable is of a type that has fields (see section 4.4)), and if it is mutable (see

assigning to
field locations

section 4.5), assignments may also selectively assign to one of the fields rather
than only to the variable itself. The syntax is as follows:

FieldAssignmentStmt → ID ’.’ ID ’:=’ Expression ’;’

Here, the first identifier is the variable name, while the second is the field
name, which must be valid for the variable and the object that the variable
refers to.

7.1.3 Assignment with indices
If a variable is of a type that is indexed, and if it is mutable, assignments may

assigning to
indexed
locations

also selectively assign to one of its indexed locations, rather than only to the
variable itself. The syntax is as follows:

IndexedAssignmentStmt → ID ’[’ Expressions ’]’ ’:=’ Expression ’;’

In CAL, an indexed location inside an object is specified by a sequence of
indicesobjects called indices, which are written after the identifier representing the

variable, and which enclosed in square brackets.

7.1.4 Assigning to and from mutable variables
In order to be able to reason about the actor state, and to facilitate program
transformations, CAL is designed to avoid aliasing of stateful structures. In

no aliasing

Eker, Janneck CAL Language Report 49

STATEMENTS 7.1 Assignment

other words, if a structure can be mutated, no two variables may point to it at
the same time.

Therefore, when assigning a data structure to a mutable variable, that data
cloningstructure must be cloned.2 Of course, this cloning operation can occur on

demand, or lazy, whenever the data structure, or a part of it, is mutated.
Whichever implementation is chosen, mutations via a mutable variable must

lazy cloningnever have an effect on the value of other variables.
Similarly, when assigning from a mutable variable, the structure assigned is

conceptually copied, so that subsequent mutations of it are not visible via the
new variable.

2In fact, it must be deeply cloned, up to the point where mutations can occur.

Eker, Janneck CAL Language Report 50

STATEMENTS 7.2 Procedure call

¶

µ

³

´

IMPLEMENTATION NOTE.
This may pose difficult implementation issues. Consider the following ex-
ample:

mutable List[Integer] a = ...;
List[Integer] b := f(a[7, 1111]);

Let us assume that the indexer with two arguments on List s computes
the sublist from the first index to the second, inclusive, i.e. a[7, 1111]
computes a list of length 1105 elements. A naive implementation would do
just that, i.e. actually create the sublist. However, if the sublist is only an
intermediate value in the computation of f , this would be very wasteful,
e.g. in this case:

function f(List[Integer] v)-->List[Integer] :
[#v]

end

Here, f returns a list of length 1 whose only element is the length of its
parameter list.
Alternatively, a sublist could be represented by a special sublist-object that
is backed by the original list, thus avoiding the explicit construction of the
new structure. However, consider an f defined like this:

function f(List[Integer] v)-->List[Integer] :
v

end

Now, f returns its parameter directly, with the consequence that whenever
the original list, the one that is the value of the mutable variable a, is
changed, so will the value of b, because its implementation is backed by
the original list.
Obviously, an implementation that tries to achieve good performance there-
fore needs to do some bookkeeping of which parts of a data structure could
be mutated, and when these get assigned to some variable, either clone
them immediately, or mark them for cloning in case they should ever be
mutated. In either case, the behavior must be as if the mutable data struc-
ture was cloned right away.

7.2 Procedure call
The only predefined operation on procedures (cf. section 6.9.2) is calling them,
i.e. invoking them with a number of arguments. Calling a procedure is written
as follows:

Eker, Janneck CAL Language Report 51

STATEMENTS 7.3 Statement blocks (begin ... end)

CallStmt → Expression ’(’ Expressions ’)’;’

The first expression must evaluate to a procedure, the other expressions
must be of the appropriate argument types. The result of this statement is the
execution of the procedure, with its formal parameters bound positionwise to
the corresponding arguments.

7.3 Statement blocks (begin ... end)
Statement blocks are essentially syntactic sugar for a special case of the call

local scopestatement, used to introduce a local scope and local variables. Their syntax
looks like this:3

BlockStmt → begin [var VarDecls do] { Statement } end

The form
special case of
procedure call

begin var decls do stmts end
is equivalent to the following procedure call:

proc () var decls do stmts end () ;

7.4 If-Statement
The if-statement is the most simple control-flow construct:

IfStmt → if Expression then { Statement } [else { Statement }] end

As is to be expected, the statements following the then are executed only if
the expression evaluates to true, otherwise the statements following the else are
executed, if present. The expression must be of type Boolean .

7.5 While-Statement
Iteration constructs are used to repeatedly execute a sequence of statements.
A while-construct repeats execution of the statements as long as a condition
specified by a Boolean expression is true.

3Note that this is the one exception from the general rule that each keyword construct can
end with an end marker that consists of the string end and the opening keyword. The keyword
endbegin would have looked too awful.

Eker, Janneck CAL Language Report 52

STATEMENTS 7.6 Foreach-Statement

WhileStmt→while Expression [var VarDecls] do [Statements] (end|endwhile)

It is an error for the while-statement to not terminate.

7.6 Foreach-Statement
The foreach-construct allows to iterate over collections, successively binding

iteration over
collections

variables to the elements of the collections and executing a sequence of state-
ments for each such binding.

ForeachStmt → ForeachGenerator { ’,’ ForeachGenerator }
[var VarDecls] do [Statements] (end|endforeach)

ForeachGenerator → foreach [Type] ID { ’,’ ID } in Expression
[’,’ Expressions]

The basic structure and execution mechanics of the foreach-statement is not
relation to
comprehen-
sions −→
6.10.2

unlike that of the comprehensions with generators discussed in section 6.10.2.
However, where in the case of comprehensions a collection was constructed
piecewise through a number of steps specified by the generators, a foreach-
statement executes a sequence of statements for each complete binding of its
generator variables.

Example 13. The following code fragment

s := 0;
foreach a in {1, 2 }, b in {1, 2 }:

s := s + a*b;
end

results in s containing the number 9.

Foreach-statement semantics. In order to precisely describe the execution of
foreach
v1,1, ..., v1,M1

in C1,
F1,1, ..., F1,K1 ,
...,
foreach
vn,1, ..., vn,Mn

in Cn,
Fn,1, ..., Fn,Kn

var D do B
end

a foreach-statement, we need to introduce a few symbols first. We call the
original foreach-statement S. The (optional) declarations we write as D, and
the body of the foreach-statement as B. Now S has N ≥ 1 generators. The
i-th generator has Mi ≥ 1 variables, with names vi,1, ..., vi,Mi . The collection
expression of the i-th generator will be called Ci. Following the i-th generator
are Ki ≥ 0 filter expressions, which we call Fi,1, ..., Fi,Ki .

We can now define the meaning of the foreach-statement by replacing it
with a number of previously described constructs, such as procedure closures,

syntactical
transforma-
tion of
foreach-
statement

procedure call, and if-statement. The key to this replacement is a function
$iterate , which we will describe below.

Eker, Janneck CAL Language Report 53

STATEMENTS 7.7 Choose-Statement

S ≡ G(1)

G(i) ≡
{

begin var D do B end i > N

begin var ai = Ci do GV (i, 1) end otherwise

GV (i, j) ≡
{

GF (i, 1) j > Mi

$iterate(ai, proc (vi,j) do GV (i, j + 1) end) otherwise

GF (i, k) ≡
{

G(i + 1) k > Ki

if Fi,k then GF (i, k + 1) end otherwise

The ai are distinct and fresh variable symbols, i.e. they are mutually differ-
ent, and they also differ from any variable symbol occurring inside the foreach-
statement.

The $iterate procedure takes two arguments, a collection and a unary
$iterate :

Collection[T]
[T-->]

Def. −→ C.2.1

procedure. It iterates over the elements of its first argument, and calls the
procedure on each element. $iterate is defined in appendix C.2.1.

See also page 46 for an explanation of the iterator name choice, and page 46
for a note concerning the efficiency of generator implementations via syntactic
substitution.

7.7 Choose-Statement
The choose-statement permits the explicit specification of (potentially nonde-
terministic) choice among a set of alternatives.

ChooseStmt → ChooseGenerator { ’,’ ChooseGenerator }
[var VarDecls] do [Statements]
[else[[var LocalVarDecls] do] [Statements]] (end|endchoose)

ChooseGenerator → choose [Type] ID [’,’ IDs] in Expression [’,’ Expressions]

The binding of values to variables happens very much like in the case of
comprehension generators or the foreach-statement—see below for a precise def-
inition of the semantics.

In contrast to the foreach-statement, the choose-statement executes its body
at most once, viz. for the first combination of values that satisfy all the filters
(which are part of the generators just as in the case of the foreach-statement
or collection comprehensions). If no such combination can be found, and if an
else-branch is present, the statements following the else-keyword are executed
instead.

Choose-statement semantics. In order to precisely describe the execution of
a choose-statement, we need to introduce a few symbols first. We call the

Eker, Janneck CAL Language Report 54

STATEMENTS 7.7 Choose-Statement

original choose-statement S. The (optional) declarations we write as D, and
the body of the foreach-statement as B, the else branch is E. Now S has N ≥ 1
generators. The i-th generator has Mi ≥ 1 variables, with names vi,1, ..., vi,Mi

.
choose
v1,1, ..., v1,M1

in C1,
F1,1, ..., F1,K1 ,
...,
choose
vn,1, ..., vn,Mn

in Cn,
Fn,1, ..., Fn,Kn

var D do B
else E end

The collection expression of the i-th generator will be called Ci. Following the
i-th generator are Ki ≥ 0 filter expressions, which we call Fi,1, ..., Fi,Ki

.
We can now define the meaning of the choose-statement by replacing it

with a number of previously described constructs, such as procedure closures,
procedure call, and if-statement. The key to this replacement is a function
$try , which we will describe below.

syntactical
transforma-
tion of
choose-
statement

S ≡ begin var a∗ := false do G(1) if not a∗ then E end end

G(i) ≡
{

begin var D do a∗ := true; B end i > N

begin var ai = Ci do GV (i, 1) end otherwise

GV (i, j) ≡
{

GF (i, 1) j > Mi

$try(ai, proc (vi,j) do GV (i, j + 1) end, lambda() : a∗ end) otherwise

GF (i, k) ≡
{

G(i + 1) k > Ki

if Fi,k then GF (i, k + 1) end otherwise

The ai and a∗ are distinct and fresh variable symbols, i.e. they are mutually
different, and they also differ from any variable symbol occurring inside the
choose-statement.

The $try procedure takes three arguments, a collection, a unary procedure,
$try :

Collection[T]
[T-->]
[-->Boolean]

Def. −→ C.2.1

and a nullary function. It iterates over the elements of its first argument, and
for each element it does the following: It applies the function (to no arguments,
as it is nullary). If the value of that application is false, it proceeds to call
the procedure (its second argument) on the element, otherwise it simply returns
(disregarding any subsequent elements of the collection).

See also page 46 for an explanation of the iterator name choice, and page 46
for a note concerning the efficiency of generator implementations via syntactic
substitution. $try is defined in appendix C.2.1.

Eker, Janneck CAL Language Report 55

STATEMENTS 7.7 Choose-Statement

RATIONALE.
Having a construct that explicitly allows the use of non-determinism (as
opposed to expressions, such as map comprehensions, that may evaluate
nondeterministically, but where this behavior is most likely unwanted and
potentially erroneous) allows actor authors to express internal choice points
which are explicitly not under the control of the actor context (i.e. the
model of computation).
The responsibility for many other choices, such as which action to fire, can
be assumed by the model of computation. Using a choose-statement inside
an action provides an explicit signal that this action may be nondetermin-
istic, and allows the model of computation to either reject it, or deal with
it accordingly.

backtracking
Example 14. The choose-statement can be used to implement simple back-
tracking algorithms, as in the following example:

s := null;
choose

a in [1, 2],
choose

b in if a = 1 then {} else {3, 4 } end
do

s := [a, b];
else

s := [];
end

Since for a = 1 the collection for b is the empty set, the body will never be
executed for this value of a, because no choice could be made for b. However,
if a = 2 , two choices can be made for b, and it is unspecified which one is
made. After executing this statement, s will be either [2, 3] or [2, 4] .

It will never be [] , because the else branch is only executed if no choice can
be made.

Eker, Janneck CAL Language Report 56

ACTIONS

Chapter 8

Actions

An action in CAL represents a (often large or even infinite) number of transitions
action ≡
family of
transitions

of the actor transition system described in section 10.3. A CAL actor description
can contain any number of actions, including none. The definition of an action
includes the following information:

• its input tokens,

• its output tokens,

• the state change of the actor,

• additional firing conditions,

• the time delay.

In any given state, an actor may take any number of transitions (including
choice
between
actions

zero), and these transitions may be represented by any number of actions in the
actor description. The choice between them is ultimately made by the context
of an actor (though the actor can constrain the possible choices, see chapter
9)—see section 8.4 for details.

The syntax of an action definition is as follows:

Action→ [ActionTag ’:’] action ActionHead [do Statements] (end|endaction)

ActionTag → ID { ’.’ ID }
ActionHead → InputPatterns ’==>’ OutputExpressions

[guard Expressions] [var VarDecls] [delay Expression]

Actions are optionally preceded by action tags which come in the form of
action tagsqualified identifiers (i.e. sequences of identifiers separated by dots), see also

section 9.1. These tags need not be unique, i.e. the same tag may be used for
more than one action. Action tags are used to refer to actions, or sets of actions,
in action schedules and action priority orders—see chapter 9 for details.

Eker, Janneck CAL Language Report 57

ACTIONS 8.1 Input patterns, and variable declarations

The head of an action contains a description of the kind of inputs this action
applies to, as well as the output it produces. The body of the action is a sequence
of statements that can change the state, or compute values for local variables
that can be used inside the output expressions.

Input patterns and output expressions are associated with ports either by
position or by name. These two kinds of association cannot be mixed. So if the
actor’s port signature is

Input1, Input2 ==> ...
an input pattern may look like this:

[a], [b, c]
(binding a to the first token coming in on Input1 , and binding b and c to the
first two tokens from Input2). It may also look like this:

Input2: [c]
but never like this:

[d] Input2:[e]
This mechanism is the same for input patterns and output expressions.

The following sections elaborate on the structure of the input patterns and
output expressions describing the input and output behavior of an action, as
well as the way the action is selected from the set of all actions of an actor.

In discussing the meaning of actions and their parts it is important to keep in
actions
declarative

mind that the interpretation of actions is left to the model of computation, and
is not a property of the actor itself. It is therefore best to think of an action as a
declarative description of how input tokens, output tokens, and state transitions
are related to each other. See also section 8.4.

8.1 Input patterns, and variable declarations
Input patterns, together with variable declarations and guards, perform two

input pattern:
activation
condition &
variable
declaration

main functions: (1) They define the input tokens required by an action to fire,
i.e. they give the basic conditions for the action to be firable which may depend
on the value and number of input tokens and on the actor state, and (2) they
declare a number of variables which can be used in the remainder of the action
to refer to the input tokens themselves. This is their syntax:

InputPattern → [ID ’:’] ’[’ IDs ’]’ [RepeatClause] [ChannelSelector]

ChannelSelector → at Expression
| at* Expression
| [at*] any
| [at*] all

RepeatClause → repeat Expression

Input patterns differ depending on whether they are written for a single
multiport
pattern
—channel
selector

port or a multiport—the former represents one channel of incoming tokens,

Eker, Janneck CAL Language Report 58

ACTIONS 8.1 Input patterns, and variable declarations

no repeat-clause with repeat-clause
single channel T List[T]
multichannel Map[CID, T] Map[CID, List[T]]

Table 8.1: Token variable types depending on input pattern kind and presence
of repeat-clause. (T is the token type of the corresponding input port.)

while the latter represents an arbitrary number (including zero) of channels. A
multiport input pattern has to have a channel selector associated with it, which
is a construction that serves to specify the channels that a pattern is applied to
(i.e. that the tokens bound by the pattern are read from).

The static type of the variables declared in an input pattern depends on the
token type declared on the input port, but also on the kind of pattern. Fig. 8.1
shows this dependency. It distinguishes between patterns according to whether
they contain a repeat-clause, and whether they take tokens from one channel
(single-channel patterns), or any number of channels (multichannel patterns).
Channels are specified using channel identifiers, which are objects identifying a
specific channel inside a multiport. Usually, channel identifiers are represented
by some other type in some platform-dependent manner. For instance, non-
negative integer numbers can be used to identify channels. Fig. 8.1 refers to
the type of channel identifiers as CID.

8.1.1 Single-port input patterns
A single-port input pattern binds a number of tokens from the input channel

single-port
=⇒
single-channel

associated with the specified port to variables specified as part of the pattern.
Because there is exactly one input channel associated with a single port, these
patterns are always single-channel patterns.

SinglePortInputPattern → [ID ’:’] ’[’ IDs ’]’ [RepeatExpression]

A pattern without a repeat-expression is just a number of variable names
inside square brackets. The pattern binds each of the variable names to one
token, reading as many tokens as there are variable names. The number of
variable names is also referred to as the pattern length. The static type of the
variables is the same as the token type of the corresponding port (Fig. 8.1).

Example 15 (Single-port input pattern). Assume the sequence of tokens on
the input channel is the natural numbers starting at 1, i.e.

1, 2, 3, 4, 5, ...
The input pattern [a, b, c] results in the following bindings:

a = 1, b = 2, c = 3

If the pattern contains a repeat-clause, that expression must evaluate to a
non-negative integer, say N . If the pattern length is L, the number of tokens

Eker, Janneck CAL Language Report 59

ACTIONS 8.1 Input patterns, and variable declarations

read by this input pattern and bound to the L pattern variables is NL. Since
in general there may be more tokens than variables (N times more, exactly),
variables are bound to lists of tokens, each list being of length N . In the pattern,
the list bound to the k-th variable contains the tokens numbered k, L+k, 2L+k,
..., (N − 1)L + k. The static type of these variables is List[T] , where T is the
token type of the port (Fig. 8.1).

Example 16 (Single-port input pattern with repeat-clause). Assume again the
natural numbers as input sequence. If the input pattern is

[a, b, c] repeat 2
it will produce the following bindings:

a = [1, 4], b = [2, 5], c = [3, 6]

8.1.2 Multiport input patterns
Multiport input patterns contain an expression that functions as a channel se-

channel
selector: one
or many

lector, i.e. it specifies which channels to read tokens from. There are two kinds
of channel selectors—those that identify precisely one channel, and those that
identify any number of channels.

Single-channel channel selectors. The at-construct is used to select one chan-
nel from a multiport. The expression following the at-keyword must evaluate to
a valid channel identifier for the given port. The reading of tokens and binding
to the pattern variables happens in the same way as described for single-port
input patterns above.

Example 17 (at channel selector). Assume four input channels ’a’ , ’b’ , ’c’ ,
’d’ with the following input tokens:

’a’: 11, 12, 13, 14, 15, 16, 17, 18, 19
’b’: 21, 22, 23, 24, 25, 26, 27, 28, 29
’c’: 31, 32, 33, 34, 35, 36, 37, 38, 39
’d’: 41, 42, 43, 44, 45, 46, 47, 48, 49

Then the input pattern
[a, b, c] repeat 2 at ’c’

would yield the bindings
a = [31, 34], b = [32, 35], c = [33, 36]

Multichannel channel selectors. CAL provides three constructs for selecting
different ways
to determine
channel set

tokens from more than one channel of a multiport at the same time. They are
distinguished by the keyword that introduces them: at*, any, all. They differ
in the way they determine the set of channels to read from as follows:

1. Following the at*-keyword is an expression that computes a (possibly
empty) collection of channel identifiers.

Eker, Janneck CAL Language Report 60

ACTIONS 8.1 Input patterns, and variable declarations

2. The any-keyword results in those channels being read from that have a
sufficient number of tokens available to be bound to the variables of the
pattern—which could be none at all, in which case the set of channels
would be empty.

3. The all-keyword selects all channels of the multiport.

All multichannel input patterns have in common that they are applied homo-
geneously, i.e. the same number of tokens is read from all selected channels (and
no tokens are read from any of the other channels). The variables are bound
to maps—the keys of these maps are channel identifiers, while the values are,
depending on the absence or presence of a repeat-clause, either tokens or lists of
tokens. Fig. 8.1 gives the static types of the pattern variables for multichannel
patterns.

Example 18 (Multichannel input patterns). Assume four input channels ’a’ ,
’b’ , ’c’ , ’d’ with the following input tokens:

’a’: 11, 12, 13, 14, 15, 16, 17, 18, 19
’b’: 21, 22, 23, 24, 25
’c’: 31, 32, 33, 34, 35, 36, 37, 38, 39
’d’: 41, 42, 43

The input pattern
[a, b, c] at* {’a’, ’c’ }

yields the bindings
a = map{’a’->11, ’c’->31 }
b = map{’a’->12, ’c’->32 }
c = map{’a’->13, ’c’->33 }

The input pattern
[a, b] all

results in the bindings
a = map{’a’->11, ’b’->21, ’c’->31, ’d’->41 }
b = map{’a’->12, ’b’->22, ’c’->32, ’d’->42 }

In this case, the keyword any instead of all would have produced the same
result.

The input pattern
[a, b] repeat 2 any

results in the bindings
a = map{’a’->[11, 13], ’b’->[21, 23], ’c’->[31, 33] }
b = map{’a’->[12, 14], ’b’->[22, 24], ’c’->[32, 34] }

In this case, all instead of any would not have worked, because the channel
’d’ does not provide the required number of tokens.

8.1.3 Scoping of action variables
The scope of the variables inside the input patterns, as well as the explicitly
declared variables in the var-clause of an action is the entire action—as a con-

Eker, Janneck CAL Language Report 61

ACTIONS 8.2 Output expressions

sequence, these variables can depend on each other. The general scoping rules
from section 5.2 need to be adapted in order to properly handle this situation.

pattern
variables ↔
var-variables

In particular, input pattern variables do not have any initialization expres-
sion that would make them depend explicitly on any other variable. However,

Fv for pattern
variables
−→ 5.2, Def. 1

their values clearly depend on the expressions in the repeat-clause and the chan-
nel selector (if present). For this reason, for any input pattern variable v, we
define the set of free variables of its initialization expression Fv to be the union
of the free variables of the corresponding expressions in the repeat-clause and
the channel selector.

The permissible dependencies then follow from the rules in section 5.2.

Example 19 (Action variable scope). The following action skeleton contains
dependencies between input pattern variables and explicitly declared variables

[n] at c, [k], [a] repeat m * n ==> ...
var

m = k * k, c = f(m)
do ... end

These declarations are well-formed, because the variables can be evaluated in
the order k , m, c , n, a.

By contrast, the following action heads create circular dependencies and
are therefore errors:

[n] at f(a), [a] repeat n ==> ... do ... end

[a] repeat a[0] + 1 ==> ... do ... end

[a] repeat n ==> ...
var

n = f(b), b = sum(a)
do ... end

[a] at c, [b] repeat a ==> ...
var

c = g(b)
do ... end

8.2 Output expressions
Output expressions are conceptually the dual notion to input patterns—they are

output
expressions
dual of input
patterns

syntactically similar, but rather than containing a list of variable names which
get bound to input tokens they contain a list of expressions that computes the
output tokens, the so-called token expressions.

Eker, Janneck CAL Language Report 62

ACTIONS 8.2 Output expressions

no repeat-clause with repeat-clause
single channel T Seq[T]
multichannel Map[CID, T] Map[CID, Seq[T]]

Table 8.2: Token expression types depending on output expression kind and
presence of a repeat-clause. (T is the token type of the corresponding output
port.)

OutputExpression→ [ID ’:’] ’[’ Expressions ’]’ [RepeatClause] [ChannelSelector]

ChannelSelector → at Expression
| at* Expression
| [at*] any
| [at*] all

RepeatClause → repeat Expression

The repeat-clause and channel selector work not unlike in the case of input
patterns, but with one crucial difference. For input patterns, these constructs
control the construction of a data structure that was assembled from input to-
kens and then bound the pattern variables. In the case out output expressions,
the values computed by the token expressions are themselves these data struc-

deconstructing
output
expression
values

tures, and they are indexed into according to the repeat-clause and the channel
selector, if these are present.

The table in Fig. 8.2 shows the kind of data structure a token expression has
to evaluate to depending on the presence or absence of a repeat-clause, and de-
pending on whether the output expression is a single-channel or a multichannel
output expression.

Single-channel output expressions. In single-channel output expressions with-
out repeat-clause, the token expressions represent the output tokens directly,
and the number of output tokens produced is equal to the number of token
expressions. If a single-channel output expression does have a repeat-clause,
the token expressions must evaluate to sequences of tokens, and the number
of tokens produced is the product of the number of token expressions and the

repeat-clause:
lists must be
long enough!

value of the repeat-expression. In addition, the value of the repeat-expression
is the minimum number of tokens each of the sequences must contain.

Example 20 (Single-channel output expressions.). The output expression
... ==> [1, 2, 3]

produces the output tokens 1, 2, 3 .
The output expression

... ==> [[1, 2, 3], [4, 5], [6, 7, 8]] repeat 2
produces the output tokens 1, 4, 6, 2, 5, 7 .

Eker, Janneck CAL Language Report 63

ACTIONS 8.2 Output expressions

The output expression
... ==> [[1, 2, 3], [4, 5]] repeat 1 at ’b’

produces the output tokens 1, 4 on channel ’b’ .

RATIONALE.
One of the key reasons for interpreting the repeat-construct in output ex-
pressions as described above is to maintain symmetry with the way input
patterns are handled. For instance, consider the following action:
action [a, b, c] repeat k ==> [a, b, c] repeat k end
This action copies its input tokens identically to its output, 3k tokens at a
time. It is, therefore, equivalent to the action
action [a] repeat 3 * k ==> [a] repeat 3 * k end
The same rationale applies to multichannel output expressions, see below.
Here, too, the design strives for a symmetry between the input patterns
and output expressions, as far as their fundamental directedness allows (the
former declares variables, while the latter uses them to compute values).

Multichannel output expressions. Similarly, for multichannel output expres-
sions without a repeat expression, the token expressions must evaluate to maps

channel
selector
constrains
token map
domains

from channel identifiers to tokens. If a repeat-clause is present, the maps must
map channel identifiers to sequences of tokens, the number of elements on those
sequences being not smaller than the value of the repeat expression. The channel
selector places some constraints on the domains of the maps as follows:

• For an at* channel selector, the intersection of the domains of the maps
must contain the collection of channel identifiers the selector expression
evaluates to.

• For an all channel selector, the intersection of all domains must contain
the set of all channel identifiers currently valid for the corresponding port.

• For a any channel selector, no constraints apply to the domains. The
channels that output will be produced on are those in the intersection of
all domains, which may be empty.

These rules are designed to make it possible to produce output homoge-
homogeneous
output
production

neously on all selected output channels—in other words, all output channels of
a multiport output the same number of tokens if they output any tokens at all.

Example 21 (Multichannel output expressions.). The output expression

... ==> [map {’a’->1, ’b’->2 },
map {’a’->3, ’b’->4,’c’->5 }] at* {’a’, ’b’ }

Eker, Janneck CAL Language Report 64

ACTIONS 8.3 Delays

produces the following output on the channels ’a’ and ’b’ :
a: 1, 3
b: 2, 4

Nothing is output on channel ’c’ .
The output expression

... ==> [map {’a’->[1, 2], ’b’->[3, 4] },
map {’a’->[5, 6], ’b’->[7, 8] }]
repeat 2 at* {’a’, ’b’ }

results in the following output:
a: 1, 5, 2, 6
b: 3, 7, 4, 8

8.3 Delays
The expression following the delay-keyword specifies the delay of the action.

uninterpreted
delays

The actor language itself does not attach any meaning to this information,
other than that it is part of the label of a state transition of an actor. See
section 10.2 for the precise meaning of time and delay, and section 3.2 for some
more information on time inside the CAL language.

If the actor contains a time-clause, then the static type of each delay expres-
sion must be a subtype of the type specified in that time-clause.

8.4 On action selection: guards and other activation
conditions

At any given point during the execution of an actor, an action may potentially
fire on some input data. Whether it is activated, i.e. whether in a given situation

activation
conditions

it actually can fire, depends on whether its activation conditions have all been
met. The minimal conditions are as follows:

1. According to the action schedule (see section 9.2) this action may fire next,
according to Def. 4 on page 70.

2. No higher-priority action is activated (see section 9.3).

3. There are sufficient input tokens available to bind the input pattern vari-
ables to appropriate values.

4. Given such a binding, all guard expressions (which must be Boolean
expressions) evaluate to true.

5. There is sufficient room for the output tokens produced by this firing.

Eker, Janneck CAL Language Report 65

ACTIONS 8.5 Initialization actions

Depending on the context in which the actor is embedded, additional condi-
tions for activating actions may apply. A model of computation may reject an
actor as non-well-formed if it cannot statically ascertain that it will meet the
relevant activation conditions whenever it needs to.

additional
conditions by
model of
computation

¶

µ

³

´

IMPLEMENTATION NOTE.
The last activation condition may not be easily satisfiable in the general
case, as it may be unknown exactly how many output tokens a firing will
produce until it has executed and the output tokens have been computed.
The important point is that firing an actor has to appear to the outside as
an atomic step—the physical time it takes is not directly relevant, and the
execution may even stall due to a lack of space for the output tokens, but it
is imperative that the firing looks as if it occurred in one atomic transition.

8.5 Initialization actions
Initialization actions are executed at the beginning of an actor’s life cycle. They

special action:
no input, no
invariants

are very similar to regular actions, with two important differences:

1. Since the assumption is that at the beginning of an actor execution no
input is available, initialization actions have no input patterns. They may
produce output, however.

2. With the exception of initialization expressions in variable declarations,
an initialization action contains the first code to be executed inside the
actor. Any state invariants in the actor may not hold, and instead have
to be established by the initialization action.

The syntax of initialization actions is as follows:

InitializationAction → [ActionTag ’:’]
initialize InitializerHead [do Statements] (end|endinitialize)

InitializerHead → ’==>’ OutputExpressions
[guard Expressions] [var VarDecls] [delay Expression]

The activation conditions for actions apply also to initialization actions—of
activation
conditions

course, since there is no input, the conditions concerning input tokens become
vacuously true.

Eker, Janneck CAL Language Report 66

ACTIONS 8.5 Initialization actions

If an actor has more than one initialization action, and if more than one
is activated at the beginning of an actor execution, one of them is chosen

only one init
action gets
fired

arbitrarily. The actor context can of course make than choice.

Eker, Janneck CAL Language Report 67

ACTION-LEVEL CONTROL STRUCTURES

Chapter 9

Action-level control structures

In CAL, an action expresses a relation between the state of an actor and input
tokens, and the successor state of the actor and output tokens. In general, CAL
actors may contain any number of actions, and in a given situation, any subset
of those may be ready to be executed. For example, both actions of the following
actor may be able to execute, if there is a token available on either input port:

Example 22 (Nondeterministic Merge).
ambiguous
action choiceactor NDMerge () A, B ==> C :

action A: [x] ==> [x] end

action B: [x] ==> [x] end
end

It is important to emphasize that the policy used to choose between the two
actions above is not part of the actor specification. In practice, the context of
the actor will make some choice, based on whatever policy it implements. This
flexibility may be desired, but sometimes the actor writer may want to have

control over
action
selection

more control over the choice of the action—e.g., if the Merge actor is supposed
to alternate between reading its input ports, one might use actor state to realize
this behavior:

Example 23 (Basic FairMerge).
using state to
control action
selection

actor FairMerge () A, B ==> C :

s := 1;

action A: [x] ==> [x]
guard s = 1
do

s := 2;

Eker, Janneck CAL Language Report 68

ACTION-LEVEL CONTROL STRUCTURES 9.1 Action tags

end

action B: [x] ==> [x]
guard s = 2
do

s := 1;
end

end

This way of specifying action choice has two key drawbacks. First, it is very
cumbersome to write and maintain, and it does not scale very well even for
modest numbers of actions and states. Furthermore, this way of specifying ac-

schedules
easier to read
and to analyze

tion choice essentially obfuscates the ”real” logic behind guards, state variables,
and assignments, so that it becomes harder to extract the intent from the actor
description, both for tools and for human readers.

These are the key motivations for using action schedules, i.e. structured
descriptions of possible orders in which actions may fire. Before we can discuss
action schedules in section 9.2, we need to take a closer look at how actions are
referred to inside of them.

9.1 Action tags
Actions are optionally prefixed with action tags (see chapter 8), which are qual-
ified identifiers:

ActionTag → QualID

QualID → ID { ’.’ ID }

The same tag may be used for more than one action. In the following, we
multiple
actions per tag

write the set of all actions tagged by a tag t as t, and the tag of some action
a as ta. The empty tag is written as ε, and the set of all untagged actions is
therefore ε.

Action tags are ordered by a prefix ordering: We say that t v t′, i.e.
prefix order
among tags

t is a prefix of t′, if t′ starts with all the identifiers in t in the same order,
followed by any number of additional identifiers, including none. For instance,
a.b.c v a.b.c.x and a.b v a.b, but a.b 6v a.c. We call t′ an extension of t.

When used inside action schedules and priority orderings, a tag denotes the
tag: denoted
action set

set of actions which are labeled with tags that are extensions of it. For any tag
t this set is called t̂ and is defined as follows:

t̂ =def {a | t v ta}

Eker, Janneck CAL Language Report 69

ACTION-LEVEL CONTROL STRUCTURES 9.2 Action schedules

9.2 Action schedules
Action schedules are structured descriptions of possible sequences in which the

fsm & regexp
schedules

actions of an actor may be executed. These sequences are either specified by a
finite state machine or a regular expression in the alphabet of action tags. In
general, like any regular language, the set of possible sequences may be finite or
infinite.

Irrespective of whether a finite state machine is used or a regular expression,
schedule =
regular tag
language

an action schedule effectively describes a (regular) language L in the alphabet
of action tags. This language is used to constrain the legal sequences of action
firings as follows.

Definition 4 (Legal action sequence). Given a tag language L, assume a finite
sequence of actions (ai)i=1..n, and a sequence (bj)j=1..m with m ≤ n and a strict
monotonic function f : {1..m} −→ {1..n} such that the following holds for all
j ∈ {1..m} and i ∈ {1..n}:

(bj) tagged
subsequence
of (ai)

1. bj = af(j)

2. tbj 6= ε

3. tai = ε, ∀i 6∈ f−1 [{1..m}]
In other words, the (bj) are the subsequence in the (ai) with non-empty tags.
If (bj) is empty, i.e. m = 0, then (ai) is a legal action sequence.

If (bj) is not empty, i.e. m ≥ 1, then (ai) is a legal action sequence if and only
if there exists a sequence of tags (tj)j=1..m such that the following holds:

1. for all j ∈ {1..m}, bj ∈ t̂j

2. there exists a w ∈ L such that (tj) v w.

A consequence of this definition is that untagged actions may occur at any
no constraints
on untagged
actions

point in the schedule—conversely, schedules do not constrain untagged actions
in any way.

We will now describe the two ways of defining a tag language: finite state
machines and regular expressions.

9.2.1 Finite state machine schedules
A finite state machine schedule defines a number of transitions between states
(and an initial state) that are each labeled with one or more action tags.

ScheduleFSM → schedule [fsm] ID ’:’
{ StateTransition ’;’ }
(end|endschedule)

StateTransition → ID ’(’ ActionTags ’)’ ’- ->’ ID
{ ’|’ ’(’ ActionTags ’)’ ’- ->’ ID }

Eker, Janneck CAL Language Report 70

ACTION-LEVEL CONTROL STRUCTURES 9.2 Action schedules

ActionTags → ActionTag
| ActionTag ’,’ ActionTags

The state before the colon is the initial state, and all states are accepting
(or final states). The tag language is the set of all sequences of tags that label
transitions leading from the initial state to any other state of the finite state
machine.

Several transitions starting from the same state may be written as separated
by the ’|’ character.

The following illustrates the use of a finite state machine action schedule to
express the FairMerge actor somewhat more concisely.

Example 24 (FairMerge, with FSM schedule).

actor FairMerge1 () A, B ==> C :

InA: action A: [x] ==> [x] end

InB: action B: [x] ==> [x] end

schedule fsm WaitA :
WaitA (InA) --> WaitB;
WaitB (InB) --> WaitA;

end
end

9.2.2 Regular expression schedules
In many cases, using an explicit finite state machine to define an action sched-
ule is still rather verbose, and specifying the tag language through a regular
expression is much more straightforward. The syntax is as follows:

ScheduleRegExp → schedule regexp RegExp (end|endschedule)

RegExp → ActionTag
| ’(’ RegExp ’)’
| ’[’ RegExp ’]’
| RegExp ’*’
| RegExp RegExp
| RegExp ’|’ RegExp

The simplest regular expression (regexp) is simply a tag, which denotes the
language consisting of just this tag. Parentheses are used to explicitly group reg-
exps. The square brackets enclose an optional regexp, describing the language
that consists of all sequences described by the regexp, as well as the empty

Eker, Janneck CAL Language Report 71

ACTION-LEVEL CONTROL STRUCTURES 9.2 Action schedules

sequence. The Kleene operator ’*’ means repetition any number of times (in-
cluding zero), juxtaposition of two regexps denotes concatenation of sequences
of the two languages, and the ’|’ operator describes alternative choice. The

operator
precedence

binding strength is the order given above, i.e. the regexp
A B* | C* D

is interpreted as
(A (B*)) | ((C*) D)

The FairMerge actor can be expressed with regexps as follows:

Example 25 (FairMerge, with regular expression schedule).

actor FairMerge2 () A, B ==> C :

InA: action A: [x] ==> [x] end

InB: action B: [x] ==> [x] end

schedule regexp
(InA InB)*

end
end

RATIONALE.
The reason for this conceptual redundancy is convenience—many schedules
are best written as regular expressions. On the other hand, in many cases
producing a regular expression can be cumbersome, and finite state ma-
chines are preferable. This is especially true for generated code, which will
usually use the finite state machine formulation.
Of course, both syntaxes are of identical expressiveness, and can therefore
be translated into one another.

Using regular expressions, control structures among actions become much
more concise and easier to read and to specify. For example, assume we do not
want to predetermine which port of the FairMerge actor is read from first. It
is very easy to augment the FairMerge2 description to realize this:

Eker, Janneck CAL Language Report 72

ACTION-LEVEL CONTROL STRUCTURES 9.3 Priorities

Example 26 (Symmetric FairMerge).

actor FairMergeSymmetric () A, B ==> C :

InA: action A: [x] ==> [x] end

InB: action B: [x] ==> [x] end

schedule regexp
(InA InB)* | (InB InA)*

end
end

9.3 Priorities
Priorities are very different from action schedules in that they genuinely add to

priorities
increase ex-
pressiveness

the expressiveness of CAL—it would not be possible in general to reduce them
to existing constructs, in the way schedules can in principle be reduced to a state
variable and guards/assignments. Among other things, priorities allow actors to
effectively test for the absence of tokens. As a consequence, actors can express

allow test for
absence of
tokens

non-prefix monotonic processes,1 which is powerful, but at the same time can
be dangerous, because it means the results computed by an actor may depend
on the way it was scheduled with respect to the other actors in the system.

Priorities are defined as a partial order relation over action tags, which
induces a partial order relation over the actions. An action can only fire if

induced
partial order
on actions

there is no other enabled action that is higher in this partial order. The order
is specified as follows:

PriorityOrder → priority{ PriorityInequality ’;’ } end

PriorityInequality → ActionTag ’>’ ActionTag { ’>’ ActionTag }

The priority inequalities are specified over tags, i.e. they have the form
t1 > t2. These inequalities induce a binary relation on the actions are follows:

a1 > a2 ⇐⇒∃t1, t2 : t1 > t2 ∧ a1 ∈ t̂1 ∧ a2 ∈ t̂2

∨∃a3 : a1 > a3 ∧ a3 > a2

The priority inequalities are valid iff the induced relation > on the actions is
validity of
priority
system

an irreflexive partial order, i.e. it is antisymmetric and transitive. Transitivity
follows from the definition, but antisymmetry and irreflexivity do not. In fact,
they do not even follow if the relation on the tags is a partial order. Consider

1See [10] for details on prefix monotonicity and its implications for the description of dataflow
systems.

Eker, Janneck CAL Language Report 73

ACTION-LEVEL CONTROL STRUCTURES 9.3 Priorities

the following example:
A.B > X > A

This is obviously a proper order on the tags. However, if we have two actions
labeled X and A.B , then the induced relation is not antisymmetric, because
according to A.B > X , the action A.B has higher priority than X, while the
inequality X > A implies that any action whose label starts with X has a higher
priority than any action whose label starts with A, including, of course, A.B .
Therefore, this system of priority inequalities is inconsistent and thus invalid.

With priorities, we can express a Merge actor that prefers one input over the
other like this:

Example 27 (BiasedMerge).

actor BiasedMerge () A, B ==> C :

InA: action A: [x] ==> [x] end
InB: action B: [x] ==> [x] end

priority
InA > InB;

end
end

Perhaps more interestingly, we can express a merge actor that is fair, in the
sense that it will consume equal amounts of tokens from both inputs as long as
they are available, but will not halt due to lack of tokens on only one of its input
ports. It is also nondeterministic, i.e. it does not specify the order in which it
outputs the tokens.

Example 28 (FairMerge, with priorities).

actor FairMerge3 () A, B ==> C :

Both: action [x], [y] ==> [x, y] end
Both: action [x], [y] ==> [y, x] end
One: action A: [x] ==> [x] end
One: action B: [x] ==> [x] end

priority
Both > One;

end
end

Eker, Janneck CAL Language Report 74

Part II

Semantics

Eker, Janneck CAL Language Report 75

ACTOR MODEL

Chapter 10

Actor model

This chapter presents the formal definition of our notion of actor. In general,
language:
finite
representation
of infinite
structure

actors may be highly complex and infinite computational structures, which can
be non-deterministic, contain and manipulate internal state, and consume and
produce units of data (tokens). The purpose of the CAL language (as that of any
other programming language) can be seen as providing a finite representation of
such structures, while exhibiting their inner structures and regularities in a way
that allows tools to identify and check them, and to use them when composing
actors or when generating implementations from actor descriptions.

10.1 Preliminaries
In the following, we assume a universe of all token values U that can be ex-

universe U
finite
sequences S
infinite
sequences S∞

changed between actors. The communication along each connection between
actors can be viewed as a sequential stream of tokens, and actors will remove
tokens from this stream and add tokens to it. We define the set S=defU∗ as the
set of all finite sequences over U . The set S∞=defS ∪ SN is the set of all finite
and infinite sequences over U . We write the empty sequence as λ. The length
of a finite sequence s is denoted by | s |.

The elements of S∞ (and consequently S) are partially ordered by their prefix
prefix orderrelation: s v r iff s is a prefix of r, i.e. r starts with the tokens of s in the order

they occur in s. For example, abc v abcd , and ab v ab , but abc 6v cabd .
Note that for any s ∈ S∞, λ v s and s v s.

Many actors have multiple input and output sequences, so most of the time
... extends to
Sn

we will work with tuples of sequences, i.e. with elements of Sn or Sn
∞ for some

n. The prefix order extends naturally to tuples as follows:

(si)i=1..n v (ri)i=1..n ⇔def ∀i = 1..n : si v ri

Note that since S∞ and Sn
∞ under the prefix order both have a least element,

and every chain in them has a least upper bound, they are complete partial

Eker, Janneck CAL Language Report 76

ACTOR MODEL 10.2 Time systems

orders. This property is relevant when relating dataflow models with a notion
of firing to Kahn process networks, as in [10, 7].

In the following we use projections from Sm to Sn, with m ≥ n. These are
functions that extract from an m-tuple an n-tuple such that for each value its
number of occurrences in the argument is not smaller than the number of oc-
currences in the result. We write projections using the letter π with appropriate
subscripts, and use them to map the input and output of an actor onto a subset
of its ports. A special kind of projection maps a tuple onto one port, say p, of
the actor. We write this projection as πp.

10.2 Time systems
We want to allow actors to have a notion of time, without committing to any
particular system of time stamps (or ”tags”, cf. [12]). Instead, we introduce
the notion of time systems, which are basically sets of time stamps with the
properties and operations we need to manipulate them.

Definition 5 (Time system). A time system is a structure

(T, ∆, z, +,≤)

with the following properties:

1. T and ∆ are sets of time tags and delays, respectively.

2. ≤ is a reflexive partial order on T

3. + : T ×∆ −→ T is defined such that ∀t ∈ T, δ ∈ ∆ : t ≤ t + δ

4. z ∈ ∆ is the zero delay such that ∀t ∈ T : t + z = t.

Many time systems have a temporal metric associated with them that defines
temporal
metric

a quantitative measure of the “distance” between two time tags. If we use a
time system together with such a metric we call it a metric time system.

Definition 6 (Temporal metric/distance). Given a time system (T, ∆, z, +,≤),
a partial function

d : T × T−⇀ R
is a temporal metric of this system iff it has the following properties for all
t1, t2, t3 ∈ T :

• t1 ≤ t2 ⇒ d(t1, t2) ≥ 0

• d(t1, t2) = −d(t2, t1)

• t1 ≤ t2 ≤ t3 ⇒ d(t1, t2) ≤ d(t1, t3) ∧ d(t2, t3) ≤ d(t1, t3)

• t1 ≤ t2 ≤ t3 ⇒ d(t1, t2) + d(t2, t3) ≥ d(t1, t3)

For any two time tags t1, t2 the value d(t1, t2), if defined, is called their (directed)
temporal distance.

Eker, Janneck CAL Language Report 77

ACTOR MODEL 10.2 Time systems

Note. d differs from what is usually called a “metric” in several important
ways. First of all it is a partial function, and is required to only quantify
distances between time tags that are comparable inside the time system. Also,
it allows distinct time tags to have a zero temporal distance, and it reflects the
“directedness” of the time system by allowing for negative distances.

temporal
“metric”

Since a temporal metric is not required to return a non-zero value for distinct
time tags, there is always a trivial temporal metric for each time system, viz.

trivial
temporal
metric

the one that yields 0 for any two tags.

Example 29. Some common time systems are the following:

• A familiar time system would be

(R,R+
0 ,≤, +)

where the comparisons and operators are the common ones on the real
numbers. Its temporal metric is subtraction.

• A somewhat more sophisticated time system would be one that employs
a notion of delta time:

(R× N,R+
0 × N,≤LEX, +n)

The time tags are tuples of a real time stamp and an additional natural
number index. Here, T = R × N, ∆ = R+

0 × N, + adds two tuples po-
sitionwise, the order is the lexicographic order on the tuples, and the d
is simply subtraction in the first (real-valued) component. For instance,
(−3.4, 2) + (5, 4) = (1.6, 6), and (1.2, 50) ≤LEX (1.21, 5) ≤LEX (1.21, 6), and
(1, 6) 6≤LEX (2, 5).

A common metric that is used with this time system computes the differ-
ence of the first component, e.g. d((1.2, 5), (1.21, 50)) = 0.01.

• Another time system is vector time. Each time tag (and delay) is an n-ary
vector of natural numbers:

(Nn,Nn,≤n,+n)

Addition is the usual vector addition as in the previous example. The
comparison compares two vectors positionwise, and two vectors are only
comparable iff all their components are related to each other in the same
way—e.g., (1, 2, 3) ≤3 (2, 3, 4) but (1, 2, 3) 6≤3 (2, 3, 1) and also (2, 3, 1) 6≤3

(1, 2, 3). In other words, unlike the previous two examples, this time sys-
tem is not totally ordered.

It is also a system that is often not associated with a temporal metric.
Many possible candidate metrics exist, however, such as sum or prod-
uct of positionwise differences, or for each component of the vector the
difference in that position.

Eker, Janneck CAL Language Report 78

ACTOR MODEL 10.3 Actor transition systems

10.3 Actor transition systems
We can now define an actor as an entity that has input/output ports through
which is interacts with its environment by receiving and sending tokens, that
makes atomic steps, and that in each such step consumes and produces a finite
(and possibly empty) sequence of tokens at each input or output port. It also
has a state (which we will not further characterize), which may change during
this step.

Definition 7 (Actor transition system, actor, ATS). Let U be the universe of
all values, and S = U∗ be the set of all finite sequences in U . Further, let
(T, ∆, z, +,≤) be a time system. For any non-empty set Σ of states an m-to-
n actor transition system (or just actor or ATS for short) is a labeled transition
system

〈σ0, ∆, τ,Â〉
with σ0 ∈ Σ its initial state, and

τ ⊆ Σ× Sm ×∆× Sn × Σ

its transition relation. Any (σ, s, δ, s′, σ′) ∈ τ is called a transition. σ is its source
state, σ′ its destination state, s its input tuple, s′ its output tuple, and δ its delay.
(s, δ, s′) are the transition label.

Finally, Â is a non-reflexive, anti-symmetric and transitive partial order re-
lation on τ , called its priority relation.

Notation 1. For any transition (σ, s, δ, s′, σ′) ∈ τ we also write

σ
s7→s′

δ
- σ′

or, if δ is understood or not relevant,

σ
s7→s′- σ′

The set of all m-to-n actors with firing is Am−→n. The set of all actors is

A =def

⋃

m,n∈N
Am−→n

The core of this definition can be found in [10], where “firing rules” defined
priority
relation
allows test for
absence of
tokens

the input tuples and a firing function mapped those to output tuples. State
was added in an extension proposed in [7]. Here, we add the priority relation,
which makes actors much more expressive, by allowing them to ascertain and
react to the “absence” of tokens. On the other hand, it can make them harder
to analyze, and it may introduce unwanted non-determinism into a dataflow
model.

Intuitively, the priority relation determines that a transition cannot occur if
some other transition is possible. We can see this in the definition of a valid

Eker, Janneck CAL Language Report 79

ACTOR MODEL 10.3 Actor transition systems

step of an actor, which is a transition such that two conditions are satisfied: the
required input tokens must be present, and there must not be another transition
that has priority.

Definition 8 (Enabled transition, step). Given an m-to-n actor 〈σ0, Σ, τ,Â〉, a

state σ ∈ Σ and an input tuple v ∈ Sm, a transition σ
s 7→s′

τ
- σ′ is enabled iff

s v v

¬∃σ r 7→r′- σ′′ ∈ τ : r v v ∧ σ
r 7→r′- σ′′ Â σ

s 7→s′- σ′

A step from state σ with input v is any enabled transition σ
s7→s′- σ′. The

residual input tuple v′ is defined by v = s + v′.

Note that the second condition for a transition to be enabled becomes vac-
uously true if Â= ∅, leaving s v v, the usual dataflow condition. We call an
actor with an empty priority relation a pure actor.

pure actor

Eker, Janneck CAL Language Report 80

Part III

Appendices

Eker, Janneck CAL Language Report 81

CAL LANGUAGE SYNTAX

Appendix A

CAL language syntax

The following is a summary of the CAL language syntax. See chapter 2 for some
relevant conventions and the syntax of lexical tokens.

A.1 Actor

Actor → [Imports] actor ID
[’[’ TypePars ’]’] ’(’ ActorPars ’)’ IOSig [TimeClause] ’:’
{ VarDecl | Action | InitializationAction | PriorityOrder }
[ActionSchedule]
{ VarDecl | Action | InitializationAction | PriorityOrder }
(end|endactor)

TypePar → ID [’<’ Type]

ActorPar → [Type] ID [’=’ Expression]

IOSig → [PortDecls] ’==>’ [PortDecls]

PortDecl → [multi] [Type] ID

TimeClause → time Type

Import → SingleImport | GroupImport ’;’

SingleImport → import QualID [’=’ ID]

GroupImport → import all QualID

QualID → ID { . ID }
Type → ID

| ID ’[’ TypePars ’]’
| ID ’(’ [TypeAttr { ’,’ TypeAttr }] ’)’
| ’[’ [Types] ’−−>’ Type ’]’
| ’[’ [Types] ’−−>’ ’]’

Eker, Janneck CAL Language Report 82

CAL LANGUAGE SYNTAX A.2 Expressions

TypeAttr → ID ’:’ Type
| ID ’=’ Expression

VarDecl → [mutable] [Type] ID [(’=’ | ’:=’) Expression]
| FunDecl | ProcDecl

A.2 Expressions

Expression → PrimaryExpression { Operator PrimaryExpression }
PrimaryExpression → [Operator] SingleExpression

{ ’(’ [Expressions] ’)’ | ’[’ Expressions ’]’ | ’.’ ID }
SingleExpression → [old] ID

| ExpressionLiteral
| ’(’ Expressions ’)’
| IfExpression
| LambdaExpression
| ProcExpression
| LetExpression
| ListComprehension
| SetComprehension
| MapComprehension

ExpressionLiteral → IntegerLiteral | DecimalFractionLiteral
| StringLiteral
| true | false | null

IfExpression → if Expression then Expression else Expression end

LetExpression → let VarDecls ’:’ Expression (end|endlet)

LambdaExpression → [const] lambda ’(’ [FormalPars] ’) [’−−>’ Type]
[var VarDecls] ’:’ Expression (end|endlambda)

FormalPar → [Type] ID

ProcExpression → proc ’(’ [FormalPars] ’)’ [var VarDecls]
(do| begin) { Statement } (end|endproc)

FuncDecl → function ID ’(’ [FormalPars] ’)’ [var VarDecls ’:’] Expression end

ProcDecl → procedure ID ’(’ [FormalPars] ’)’ [var VarDecls (begin| do)]
{ Statement } end

Eker, Janneck CAL Language Report 83

CAL LANGUAGE SYNTAX A.3 Statements

SetComprehension → ’{’ [Expressions [’:’ Generators]] ’}’
ListComprehension → ’[’ [Expressions [’:’ Generators] [’|’ Expression]] ’]’

MapComprehension → map ’{’ [Mappings [’:’ Generators]] ’}’
Mapping → Expression ’->’ Expression

Generator → for [Type] ID [’,’ IDs] in Expression { ’,’ Expression }
TypeAssertionExpr → ’(’ Expression ’::’ Type ’)’

A.3 Statements

Statement → AssignmentStmt
| CallStmt
| BlockStmt
| IfStmt
| WhileStmt
| ForeachStmt
| ChooseStmt

AssignmentStmt → ID [Index | FieldRef] ’:=’ Expression ’;’

Index → ’[’ [Expressions] ’]’

FieldRef → ’.’ ID

CallStmt → Expression ’(’ [Expressions] ’)’;’

BlockStmt → begin [var VarDecls do] { Statement } end

IfStmt → if Expression then { Statement } [else { Statement }] end

WhileStmt→while Expression [var VarDecls] do [Statements] (end|endwhile)

ForeachStmt → ForeachGenerator { ’,’ ForeachGenerator }
[var VarDecls] do [Statements] (end|endforeach)

ForeachGenerator → foreach [Type] ID { ’,’ ID } in Expression
[’,’ Expressions]

Eker, Janneck CAL Language Report 84

CAL LANGUAGE SYNTAX A.4 Actions

ChooseStmt → ChooseGenerator { ’,’ ChooseGenerator }
[var VarDecls] do [Statements]
[else [[var VarDecls] do] [Statements]] (end|endchoose)

ChooseGenerator → choose [Type] ID [’,’ IDs] in Expression [’,’ Expressions]

A.4 Actions

Action→ [ActionTag ’:’] action ActionHead [do Statements] (end|endaction)

ActionTag → ID { ’.’ ID }
ActionHead → InputPatterns ’==>’ OutputExpressions

[guard Expressions] [var VarDecls] [delay Expression]

InputPattern → [ID ’:’] ’[’ IDs ’]’ [RepeatClause] [ChannelSelector]

ChannelSelector → at Expression
| at* Expression
| [at*] any
| [at*] all

RepeatClause → repeat Expression

OutputExpression → [ID ’:’] ’[’ Expressions ’]’ [RepeatClause]
[ChannelSelector]

InitializationAction → [ActionTag ’:’]
initialize InitializerHead [do Statements] (end|endinitialize)

InitializerHead → ’==>’ OutputExpressions
[guard Expressions] [var VarDecls] [delay Expression]

Eker, Janneck CAL Language Report 85

CAL LANGUAGE SYNTAX A.5 Action control

A.5 Action control

ActionSchedule → ScheduleFSM | ScheduleRegExp

ScheduleFSM → schedule [fsm] ID ’:’
{ StateTransition ’;’ }
(end|endschedule)

StateTransition → ID ’(’ ActionTag { ’
’ ActionTag } ’)’ ’- ->’ ID

{ ’|’ ’(’ ActionTags ’)’ ’- ->’ ID }
ActionTags → ActionTag

| ActionTag ’,’ ActionTags

ScheduleRegExp → schedule regexp RegExp (end|endschedule)

RegExp → ActionTag
| ’(’ RegExp ’)’
| ’[’ RegExp ’]’
| RegExp ’*’
| RegExp RegExp
| RegExp ’|’ RegExp

PriorityOrder → priority { PriorityInequality ’;’ } end

PriorityInequality → ActionTag ’>’ ActionTag { ’>’ ActionTag }

Eker, Janneck CAL Language Report 86

KEYWORDS

Appendix B

Keywords

The following table lists the currently active reserved words in CAL. The com-
ment either names the context of its use or provides an example schema of its
use. Note that these are not complete syntax rules. The references point to
further information on the keyword.

Keyword Comment Reference
action action actionhead do statements end 8

actor actor actorhead :
decls, actions, etc. end

3

all input patterns 8.1
output expressions 8.2

and Boolean operator C.1, C.2.9
any input patterns 8.1

output expressions 8.2
at input patterns 8.1

output expressions 8.2
at* input patterns 8.1

output expressions 8.2
begin procedure head begin statements

end
6.9.3

proc head begin statements end 6.9.2
begin statements end 7.3

choose choose generators do statements end 7.7
const const lambda head : expression

end
6.9.1

delay action head 8.3
div arithmetic operator C.1, C.2.6

do actions 8
structured statements 7.5, 7.6, 7.7

continued on next page

Eker, Janneck CAL Language Report 87

KEYWORDS

(continued)
Keyword Comment Reference

dom domain operator on maps C.1, C.2.5
else if expression then expression

else expression end
6.7

if expression then statements
else statements end

7.4

choose generators do
statements else statements end

7.7

end generic end marker
endaction alternative end marker, see action

endactor alternative end marker, see actor
endchoose alternative end marker, see choose

endforeach alternative end marker, see foreach
endfunction alternative end marker, see function

endif alternative end marker, see if
endinitialize alternative end marker, see

initialize
endlambda alternative end marker, see lambda

endlet alternative end marker, see let
endpriority alternative end marker, see priority

endproc alternative end marker, see proc
endprocedure alternative end marker, see

procedure
endschedule alternative end marker, see schedule

endwhile alternative end marker, see while
false Boolean constant literal C.2.9

for for vars in expression 6.10.2
foreach foreach generators do statements

end
7.6

fsm schedule fsm tag : transitions end 9.2.1
function function head : expression end 6.9.3

guard action header 8
if if expression then expression

else expression end
6.7

if expression then statements
else statements end

7.4

import import qualid [= var] 3.1
in membership operator, collections C.1, C.2.1

generators 6.10.2, 7.6, 7.7
initialize initialize head do statements end 8.5

lambda lambda head : expression end 6.9.1
let let vardecls : expression end 6.8

continued on next page

Eker, Janneck CAL Language Report 88

KEYWORDS

(continued)
Keyword Comment Reference

map map { expressions [: generators] } 6.10
mod modulo operator C.1, C.2.6

multi multi-port declaration 3
mutable mutable vardecl 5.1.1

not Boolean operator C.1, C.2.9
null literal 2.1

old old var 6.2.1
or Boolean operator C.1, C.2.9

priority priority inequalities end 9.3
proc proc head do statements end 6.9.2

procedure procedure head do statements end 6.9.3
regexp schedule regexp regexp end 9.2.2
repeat input patterns 8.1

output expressions 8.2
rng range operator on maps C.1, C.2.5

schedule schedule schedule end 9.2
then if expression then expression

else expression end
6.7

if expression then statements
else statements end

7.4

time actor head 3
true Boolean constant literal C.2.9

var variable declarations marker
while while expression do statements end 7.5

The following keywords are reserved for future use.
assign case default endinvariant endtask

endtype ensure invariant now out
protocol require task type

Eker, Janneck CAL Language Report 89

BASIC RUNTIME INFRASTRUCTURE

Appendix C

Basic runtime infrastructure

This appendix describes the basic runtime infrastructure, i.e. the kinds of ob-
jects and operations on them that implementations must provide in order to
implement CAL. A realistic implementation might support many more data
types and have a much more extensive library of functions and procedures.
Most of the facilities described in this appendix are used in CAL constructs,
such as collections in generators, or maps and sets in input patterns and output
expressions.

C.1 Operator symbols
The following table summarizes the predefined unary operator symbols in CAL.

Operator Operand type Meaning
not Boolean logical negation

Collection[T] number of elements
Map[K, V] number of mappings

dom Map[K, V] domain of a map
rng Map[K, V] range of a map

- Number arithmetic negation

The next table lists the predefined binary operator symbols in the CAL lan-
guage. They are sorted by increasing binding strength. Their binding strength
is given by a precedence figure P , higher precedence binds stronger.

Eker, Janneck CAL Language Report 90

BASIC RUNTIME INFRASTRUCTURE C.2 Basic data types and their operations

P Operator Operand 1 Operand 2 Meaning
1 and Boolean Boolean logical conjunction

or Boolean Boolean logical disjunction
2 = Object Object equality

!= Object Object inequality
< Number Number less than

Set[T] Set[T]
String String

Character Character
<= analogous to < less then or equal

> analogous to < greater than
>= analogous to < greater than or equal

3 in T Collection[T] membership
4 + Number Number addition

Set[T] Set[T] union
List[T] List[T] concatenation

Map[K, V] Map[K, V] map union
- Number Number difference

Set[T] Set[T] set difference
5 div Number Number integral division

mod Number Number modulo
* Number Number multiplication

Set[T] Set intersection
/ Number Number division

6 ̂ Number Number exponentiation

C.2 Basic data types and their operations
This section shortly lists the basic data types used by CAL, describes their
fundamental properties, and the operations they can be expected to support.

Many of the basic data types are composite, i.e. elements of these types may
be objects that contain other objects. In the cases presented in this section,
such a composite can be recursively decomposed into a subobject and a residual
composite, until a canonical empty composite is reached. Functions operating
on such composites can often easily be described by using selector functions.

selector
function

A selector function takes a composite and another function as arguments. It
picks one of the subobjects and passes it and the residual composite into the
argument function. In the cases below, we can describe our composite data
types by some properties of the data objects and the behavior of the selector
function.

C.2.1 Collection[T] —collections
An object of type Collection[T] is a finite collection of objects of type T.
The most fundamental operation on it is selecting an element, which is really

Eker, Janneck CAL Language Report 91

BASIC RUNTIME INFRASTRUCTURE C.2 Basic data types and their operations

dividing the collection into an element and a residual collection of the same kind.
The selectf selector function does this, and has the following signature:

selectf

selectf<A, B>: [[A, Collection[A] --> B],
Collection[A],
B --> B]

Different kinds of collections may differ in the way the selector function picks
the element from the collection (e.g., in the case of lists, it is guaranteed to pick
the first element of the list, see C.2.4).

The two fundamental operations on a collection are computing its size and
size and
membership

testing whether a given object is contained by it. These are represented by two
operators, the prefix operator # and the infix operator in . We assume that
these are substituted by function calls as follows:

C ≡ $size(C)
a in C ≡ $member(a, C)

We can define the $size and $member functions using the selectf func-
tion in the following manner:

function $size(C) : // prefix #
selectf(lambda (a, C1) :

1 + $size(C1)
end, C, 0)

end

function $member(x, C) :
selectf(lambda (a, C1) :

if a = x then true else
$member(x, C1)

end
end, C, false)

end

Finally, we can define iteration over a collection by writing a procedure that
works somewhat analogous to the selectf function:

procedure selectp(p, C) begin
selectf(lambda (a, C1) :

proc () do p(a, C1); end
end,
C,
proc () do end)();

end
end

Consequently, the signature of selectp is as follows:

selectp<A>: [[A, Collection[A] -->], Collection[A]]

Eker, Janneck CAL Language Report 92

BASIC RUNTIME INFRASTRUCTURE C.2 Basic data types and their operations

Generator functions and procedures

The selection function and procedure also allow us to construct the various
functions and procedures used in defining generators in CAL. For instance, the
$mapadd function used in comprehensions (see section 6.10.2), which is slightly
different depending on whether it produces a set, a list, or a map:

function $mapaddset (C, f) :
selectf(lambda (a, C1) : f(a) + $mapaddset(C1, f) end,

C, {})
end

function $mapaddlist (C, f) :
selectf(lambda (a, C1) : f(a) + $mapaddlist(C1, f) end,

C, [])
end

function $mapaddmap (M, f) :
selectf(lambda (a, M1) : f(a) + $mapaddmap(M1, f) end,

M, map {})
end

The $iterate procedure used in the foreach-statement (see section 7.6)
can be built on top of selectp as follows:

procedure $iterate (C, p) begin
selectp(proc (a, C1) do p(a); $iterate(C1, p); end, C);

end

Finally, the $try procedure used in the choose-statement (see section 7.7)
can be constructed as follows:

procedure $try (C, f, p) begin
selectp(proc (a, C1) do

if f() then
p(a);
$try(C1, f, p);

end
end, C);

end

C.2.2 Seq[T] —sequences
Sequences are arrangements of objects that are indexed by non-negative integers,
starting at zero if not empty, and either ending at some maximal index k, or
not at all. The first kind of sequence is called finite sequence or list (see section
C.2.4), the second kind is called infinite sequence.

Eker, Janneck CAL Language Report 93

BASIC RUNTIME INFRASTRUCTURE C.2 Basic data types and their operations

The selector function of sequences splits the non-empty sequence into its first
element and the rest of the sequence:

selectf<A, B>: [[A, Seq[A] --> B],
Seq[A],
B --> B]

The only operations on sequences are indexing (using a single integral index)
hasElementand testing whether a given non-negative integer is a valid index. They can be

expressed in terms of the selector as follows:

function $nth(n, S) : // indexer
selectf(lambda (a, R) :

if n = 0 then a else
$nth(n - 1, R)

end, S, null)
end

function hasElement (n, S) :
selectf(lambda (a, R) :

if n = 0 then true else
hasElement(n - 1, R)

end, S, false)
end

C.2.3 Set[T] < Collection[T] —sets
Sets are a special kind of collection (see section C.2.1) that guarantee that
each object occurs in them at most once. The selection function selectf is

nondeterministic
selectf

nondeterministic on sets with two or more elements, i.e. it is unspecified which
element will be chosen.

Sets are partially ordered by the subset order, which can be defined as follows:
subset :
partial orderfunction subset(S1, S2) :

selectf(lambda (a, S) :
if a in S2 then

subset(S, S2)
else

false
end

end, S1, true)
end

The comparison operators (<, <=, >, >=) are based on the subset order. In
set equalityaddition, two sets are considered equal if they are subsets of each other, i.e.

they contain the same elements.
The fundamental way of constructing sets is to add one element to an existing

addElement

Eker, Janneck CAL Language Report 94

BASIC RUNTIME INFRASTRUCTURE C.2 Basic data types and their operations

set. This can be done using the function addElement , which has the following
signature:

addElement<T> : [T, Set[T] --> Set[T]]

The result of addElement(a, S) is the smallest set that contains both, a
and all the elements in S.

Sets also have operators for union (+), intersection (*) and set difference (-),
which can be defined as follows:

function $union (S1, S2) : // infix +
selectf(lambda(a, S) :

addElement(a, $union(S, S2))
end, S1, {})

end

function $intersection(S1, S2) : // infix *
selectf(lambda(a, S) :

if a in S2 then
addElement(a, $intersection(S, S2))

else
$intersection(S, S2)

end
end, S1, {})

end

function $setDifference(S1, S2) : // infix -
selectf(lambda(a, S) :

if a in S2 then
$setDifference(S, S2)

else
addElement(a, $setDifference(S, S2))

end
end, S1, {})

end

In addition to these basic operations, there are set comprehensions for com-
puting sets (section 6.10).

C.2.4 List[T] < Collection[T], Seq[T] —lists
Lists are finite, sequential arrangements of objects. They are collections and
sequences at the same time. As a consequence, its selector function splits the
(non-empty) list into its first element and the rest of the list.

For any list, the value computed by the $size function (section C.2.1)
defines the valid indices (via $nth and hasElement , see section C.2.2) into
the list, which are the non-negative integers smaller than that number.

Eker, Janneck CAL Language Report 95

BASIC RUNTIME INFRASTRUCTURE C.2 Basic data types and their operations

Similar to sets, lists can be constructed elementwise using a cons function, cons
constructorthat adds an element to the front of an existing list:

cons<T> : [T, List[T] --> List[T]]

Lists can be concatenated using the + operator, which can be defined as
follows:

function $add (L1, L2) : // operator +
selectf(lambda (a, L) :

cons(a, $add(L, L2))
end, L1, L2)

end

Similarly to sets, list can be created using list comprehensions (section 6.10).

C.2.5 Map[K, V] —maps
A map of type Map[K, V] maps finitely many keys of type K to values of type
V. The set of keys of a map is called its domain, while the set of values is called
its range.

Like collections, maps are accessed using a selector function. In the case of
maps, this has the following signature:

selectf<K, V>: [[K, V, Map[K, V] --> A],
Map[K, V],
A --> A]

It separates a non-empty map into a key, the corresponding value, and the
residual map, which it then applies its first argument to.

The domain and range of a map can then be defined like this:

function $domain(M) : // operator dom
selectf(lambda (k, v, M1) :

addElement(k, $domain(M1))
end, M, {})

end

function $range(M) : // operator rng
selectf(lambda (k, v, M1) :

addElement(v, $range(M1))
end, M, {})

end

The value corresponding to a key in a map is retrieved via an indexer, using
the key as in index into the map. The indexing function is defined as follows:

function $get(x, M) // indexer
selectf(lambda(k, v, M1) :

Eker, Janneck CAL Language Report 96

BASIC RUNTIME INFRASTRUCTURE C.2 Basic data types and their operations

if x = k then v else
$get(x, M1)

end
end, M, null)

end

C.2.6 Number—numbers
Most of the number system of CAL is left to platform definition. The language
itself provides two kinds of numeric literals (integers are decimal fractions).
There are a number of operators on numbers, cf. section C.1 for details.

The type Number contains the subtype Integer of integer numbers.

C.2.7 Character —characters
Characters are usually related to other data types, such as numbers (via some
encoding) or strings (as components of strings). The details of this are left to
the definition of platforms.

Characters are (possibly partially) ordered, and thus support the relational
operators <, <=, >, >=.

C.2.8 String < List[Character] —strings
Strings are lists of characters, supported by a special syntax for their construc-
tion. It is left to an implementation whether they are identical to a correspond-
ing list of characters, i.e. whether

"abc" = [’a’, ’b’, ’c’]
Strings ‘inherit’ the order from characters, and expand it lexicographically:

function $stringLE (s1, s2) : // operator <=
selectf(lambda (c1, r1) :

selectf(lambda (c2, r2) :
if c1 = c2 then

$stringLE(r1, r2)
else

c1 < c2
end

end, s2, false)
end, s1, true)

end

C.2.9 Boolean —truth values
The Boolean data type represents truth values. It is supported by two constant
literals (true and false) as well as a number of operators, cf. section C.1.

Eker, Janneck CAL Language Report 97

BASIC RUNTIME INFRASTRUCTURE C.2 Basic data types and their operations

C.2.10 Null —the null value
The Null data type has only one representative, the object denoted by the
literal null. Apart from equality tests, no operations are defined on this type.

Eker, Janneck CAL Language Report 98

Acknowledgments
Many people have contributed to this work in various ways, and the authors
would like to acknowledge their contributions and thank them for their input
and support.

Special thanks go to Edward A. Lee, Christopher Hylands, H. John Reekie,
Anders Blomdell, Lars Wernli, Chris Chang, Yang Zhao, Ernesto Wandeler, Ed
Willink, Steven Neuendorffer, Kees Vissers, C. Xavier Brooks, and the Ptolemy
Group at UC Berkeley.

The research reported here is part of the Ptolemy project, which is sup-
ported by the Defense Advanced Research Projects Agency (DARPA), the
MARCO/DARPA Gigascale Silicon Research Center (GSRC), the State of Cal-
ifornia MICRO program, and the following companies: Agilent Technologies,
Cadence Design Systems, Hitachi, and Philips.

Part of this research was supported by STINT—The Swedish Foundation for
International Cooperation in Research and Higher Education.

Addresses & contact
Johan Eker johan.eker@ericsson.com

Jörn W. Janneck jwj@acm.org
The Ptolemy Project http://ptolemy.eecs.berkeley.edu

CAL Development http://www.caltrop.org

Eker, Janneck CAL Language Report 99

mailto:johan.eker@ericsson.com
mailto:jwj@acm.org
http://ptolemy.eecs.berkeley.edu
http://www.caltrop.org

INDEX INDEX

Index

(...)
in action schedule, 70, 71
in expression, 35

*
in action schedule, 71

-->
in lambda-expression, 40

-> , 43
.

in action tag, 57
in assignments, 48
in expression, 35
in field selection expression, 38

:
after action tag, 57
in action schedule, 70
in actor head, 17
in initialization action, 66
in input pattern, 58
in lambda-expression, 40
in output expression, 62

:: , 47
:=

in assignments, 48
in variable declarations, 29

;
in action schedule, 70
in assignments, 48
in priority clause, 73
in procedure call, 51

<
in type parameter constraint, 17

=
in actor parameters, 17
in variable declarations, 29

==>
in action head, 57
in initialization action, 66
in port declaration, 17

>
in priority clause, 73

[...] , 43
in action schedule, 71
in assignments, 48
in expression, 35
in indexing expression, 39
in input pattern, 58
in output expression, 62

#
on collection, 92

$
in reserved identifiers, 13

$iterate
definition, 93
use in foreach-statement, 54

$mapadd
definition, 93
use in generators, 45

$try
definition, 93
use in choose-statement, 55

{... }, 43
|

in action schedule, 70, 71

action, 17, 57–67
activated, 65
activation conditions, 65
and transition, 57
body, 57

Eker, Janneck CAL Language Report 100

INDEX INDEX

choice, 57
control structures, 68–74
delay, 57, 65
duration, 19
firability, 58
head, 57
initialization action, 66–67

activation conditions, 66
multiple activated, 66

legal sequence of, 70
priority, 73–74

order construction, 73
partial order, 73

schedule, 69–73
finite state machine, 70–71
regular expression, 71–73

scope, 61–62
selection, 65–66, 68–74
tag, 57, 69

denoted actions, 69
extension, 69
language, 70, 71
prefix order, 69

untagged
and schedules, 70

variable
scope, 61–62

action, 57
action schedule, 17, 69
activation conditions

of action, 65
of initialization action, 66

actor, 76–80
firing, 6
initial state, 79
parameter, 17, 18, 28
port signature, 17, 18
priority relation, 79
pure, 80
state, 6, 79

change, 57
structure of, 17
transition, 79

relation to action, 57
transition relation, 79
type parameter, 17

bound, 17
actor, 17
actor model, 76–80
actor transition system, 79
actors

composition of, 6
scheduling of, 7

aliasing, 49
all, 58, 60, 62
any, 58, 60, 62
application expression, 37–38, 41
art of cheating, 37
assignability, see types, assignability
assignment, see variable, 48–51

field, 48–49
indexed, 48–49
simple, 48–49

associativity
of operators, 39

at, 58, 60, 62
at*, 58, 60, 62
ATS, see actor transition system

backtracking
and choose-statement, 56

Backus-Naur-Form, 15
begin, 41
binary operator

predefined, 90
binding, 28

assignable, 28
mutable, 28

BNF, 15
body

of expression, 16
of statement, 16

Boolean (type), 24, 36, 40, 44, 52, 55,
97

cast, see type assertion
channel, 18
channel identifier, 59
channel selector, 58, 60

free variables of, 62
in output expression, 63
multichannel, 60, 64

Eker, Janneck CAL Language Report 101

INDEX INDEX

output expression
constraints on map domains, 64

single-channel, 60, 63
ChannelID (type), 24
Character (type), 97
choose, 54
choose-statement, 54–56

backtracking, 56
filter, 54
semantics, 54

cloning, 50
lazy, 50

closure, 40–42
and old variables, 37
function, 38, 40–41

application, 41
application of, 40
const, 41
invariant, 41
type, 41

parameter, 28
procedure, 40–42

call of, 40
relation to variable dependency, 30

Collection (type), 24, 44, 91–93
membership test, 92
selector function, 92
size, 92
vs collection, 42

collection
expression, 43
proper, 42
vs Collection , 42

comment, 14
syntax, 14

complete partial order
of sequences, 76

composite object, 25, 39
comprehension, 42–46

efficiency, 46
filter, 44
generator, 42, 44

element order, 44
semantics, 45
syntax, 43

implementation, 46

list, 43
tail-free, 45

map, 43
set, 43
simple, 43
with generators, 43–46

condition
for firing, 57

conditional expression, 39–40
const, 40, 41
control flow, 52, 53
control structures

action-level, 68–74
corollary

mutual dependencies, 31
cpo, see complete partial order

dataflow, 7
declaration

of function, 29, 42
of procedure, 29, 42

declaration set
well-formed, 31

definition
actor, 79
actor transition system, 79
ATS, 79
dependency relation, 32
dependency set, 30
enabled transition, 80
immediate dependency set, 30
legal action sequence, 70
step (of actor), 80
temporal metric, 77
time system, 77
well-formed declaration set, 31

delay, 19–20, 57
in time system, 19

zero, 19
of action, 65
time, 77

delay, 57, 65, 66
delimiter, 13
dependency

circular, 30
dependency relation, 32

Eker, Janneck CAL Language Report 102

INDEX INDEX

is partial order, 32
dependency set, 30–34

definition, 30
example, 32
immediate, 30

do, 41, 52–54, 57, 66
domain

of map, 96
definition, 96

duration
of action firing, 19

eager evaluation, 37
else, 39, 52, 54

in foreach-statement, 54
end, 17, 39–42, 52–54, 57, 66, 70, 71,

73
alternatives, 16

exception, 52
end marker, 16
endaction, 57
endactor, 17
endchoose, 54
endforeach, 53
endfunction, 42
endif, 39, 52
endinitialize, 66
endlambda, 40
endlet, 40
endpriority, 73
endproc, 41
endprocedure, 42
endschedule, 70, 71
endwhile, 52
environment, 40

global, 17, 18
example

old reference, 36
action variable scope, 62
actor

Basic FairMerge, 68
BiasedMerge, 74
FairMerge with priorities, 74
FairMerge with regexp schedule,

72
Nondeterministic Merge, 68

Symmetric FairMerge, 73
backtracking using choose-statement,

56
collections with generators, 44
FairMerge, with FSM schedule, 71
fields and indices, 25
foreach-statement, 53
$mapadd function, 46
multichannel input patterns, 61
mutually recursive variable decla-

rations, 32–33
non-numeric indices, 25
non-well-formed variable declara-

tions, 33–34
operator associativity and prece-

dence, 39
order in generator collections, 44
simple map expressions, 43
simple set and list expressions, 43
single-channel output expression,

63
single-port input pattern, 59
single-port input pattern with repeat-

clause, 60
time systems, 78

expression, 35–47
application, 40, 41
body, 16
closure, 40–42

const function, 41
function, 40–41
invariant function, 41
procedure, 40–42

comprehension, 42–46
filter, 44
generator, 44
generator semantics, 45
list, 43
map, 43
set, 43
simple, 43
with generators, 43–46

conditional, 39–40
constant, 36
field selector, 38–39
function

Eker, Janneck CAL Language Report 103

INDEX INDEX

application, 37–38, 41
head, 16
indexing, 39
lambda, 38
lambda, 40–41

const, 41
list comprehension

tail-free, 45
literal, 36

decimal fraction, 36
integer, 36
string, 36
syntax, 36

local scope, 40
operator, 39
primary, 35
proc, 41–42
selector, 38–39
side-effect-free, 35, 41
syntax, 35
type assertion, 46–47
type of, 35
variable, 28–34, 36–37

extension
of action tag, 69

false, 24, 36, 55, 97
field, 25

selector expression, 38–39
field reference

in assignments, 48
filter, 44
firing

duration, 19
firing condition, 57
firing rules (from [10]), 79
for, 43, 44
foreach, 53

statement, 48
foreach-statement, 53–54

semantics, 53
free variable, 30, 33
fsm, 70
function, 40–41

application, 37–38, 40, 41
const, 41

declaration, 29, 42
invariant, 41
recursive, 30
type, see types, closure, 41

function, 42

generator, 42–46
collection

order, 44
filter, 44
in foreach-statement, 53
semantics, 45
syntax, 43
variable, 44

scoping, 44
generic type, see types, parametric
group import, 19
guard, 57, 66

hasElement
definition, 94

head
of expression, 16
of statement, 16

homogeneous use
of input pattern, 61
of output pattern, 64

host environment, 14
host language, 14

identifier, 13
escape syntax, 13
escaped, rationale, see rationale,

escaped identifier
qualified, 18, 69
reserved, 13

if, 39, 52
statement, 48

if-statement, 52
implementation note

actor parameter, 18
cloning, 50
generator implementations, 46
lazy evaluation, 37
object types, 22

Eker, Janneck CAL Language Report 104

INDEX INDEX

output token activation condition,
66

import, 18–19
importing

group import, 19
of binding, 18
single import, 19

in, 43, 44, 53, 54
in (operator)

on collection, 92
index, 25

in assignments, 48
indexing expression, 39
initial state

of actor, 79
initialization action, 66–67

activation conditions, 66
multiple activated, 66

initialization expression, 29
of a variable, 30

initialization rule, 17
initialize, 66
input pattern, 58–62

association with port, 58
channel selector, 58
homogeneous use, 61
implicit variable declaration, 58
multichannel, 59
multiport, 60–61
single-channel, 59
single-port, 59–60
variable

dependencies, 62
type, table, Fig. 8.1, 59

input token, 57
Integer (type), 25, 97

key
of map, 96

keyword construct, 15
keywords, 13
Kleene operator

in action schedule, 71

labeled transition system, 79
lambda, 40

lambda closure
type, see types, closure

lambda expression, 38, 40–41
const, 41

language
core, 8
domain-specific, 8
usability, 8

language design
goals, 7–9

lazy evaluation, 37
let, 29, 40
lexical scoping, 30
lexical token, 13
lexicographical order, 97
List (type), 24, 95–96

concatenation, 96
cons , 95
constructor, 95
hasElement , 95
selector function, 95
size, 95
valid indices, 95

list
comprehension, 42, 43

simple, 43
tail-free, 45

construction, 42
literal, 36

decimal fraction, 36
integer, 36
numeric, 14
string, 36

local name, 18
location, 25–26, 39

field, 25
independence of, 26
index, 25
orthogonality, 26

LTS, see labeled transition system

Map (type), 24, 61, 64, 96–97
domain, 96

definition, 96
indexer, 96
key, 96

Eker, Janneck CAL Language Report 105

INDEX INDEX

range, 96
definition, 96

selector function, 96
value, 96

map
comprehension, 42, 43

simple, 43
construction, 42

nondeterminism, 43
key, 43
value, 43

map, 43
membership test

in collection, 92
metric

of time system, see temporal met-
ric

metric time system, 77
model, 6

communication, 7
model of computation, 7
multi, 17
multichannel channel selector, 60, 64
multichannel input pattern, 59
multichannel output expression, 64
multiport, see port, multiport, 59

and input pattern, 58
multiport input pattern, 60–61
mutable, 29
mutation, 48

N (natural numbers), 76
namespace, 18–19

hierarchical, 17, 18
local name, 18
subnamespace, 18

nondeterminism
choose-statement, 54–56

notation
σ

s 7→s′

δ
- σ′, 79

notational idiom, 15
Null (type), 24, 36, 98
null, 24, 36
Number (type), 97
numeric literal, see literal, numeric

object
mutable, 26
structured, 25–26

object modification, see types, mutable
object mutation, see types, mutable
object types, see types, object
old, 35–37

and closures, 37
meaning, 37
restrictions, 37
translation, 37
use in action, 36

operator, 13, 39
associativity, 39
basic, 90–91

binary, 90
unary, 90

binary, 39
binding strength, 90
infix, 39
precedence, 39, 90
predefined, 90–91

binary, 90
unary, 90

prefix, 39
symbols, 90
unary, 39

operators
represented by functions, 39

order
lexicographical, 97
of time tags, 19

output expression, 62–65
association with port, 58
multichannel, 64
single-channel, 63
token expression

type, table (Fig. 8.2), 63
output pattern

homogeneous use, 64
output token, 57

package, see subnamespace
parameter

actor, 28
closure, 28

Eker, Janneck CAL Language Report 106

INDEX INDEX

generic type, 17
bound, 17

of actor, 17, 18
partial order

dependency relation is, 32
pattern variable

dependencies, 62
scoping, 61–62
type

table, Fig. 8.1, 59
platform

profile, 10
platform independence, 9–10
port

and input patterns, 58
and output expression, 58
input, 6
multiport, 18, 59

and input pattern, 58
output, 6
single, 18
single port, 59

and input pattern, 58
port signature, see actor, port signa-

ture
portability, see platform independence

language, 10
source code, 10
target code, 10

precedence
of operators, 39

prefix
of input, 6

prefix order, 76
is complete partial order, 76

prefix-monotonicity, 73
primary expression, 35
priority

of action, 73–74
order construction, 73
partial order, 73

order, 73
construction, 73
validity, 73

priority, 73
priority block, 17

priority relation
of actor, 79

proc, 41
proc expression, 41–42
procedural closure

type, see types, closure
procedure, 40–42

call, 40, 51–52
declaration, 29, 42

procedure, 42
profile, see platform, profile
Ptolemy, 6, 7
pure actor, 80

qualified identifier, see identifier, qual-
ified, 69

range
of map, 96

definition, 96
rationale

choose-statement, 55
escaped identifier, 14
literals, 36
$mapadd function, 45
optional types, 21
output expression design, 64
redundant action schedule syntax,

72
variable declaration

well-formedness, 32
recursion, see recursive closure
recursive closure, 30
recursive function, 30
regexp, see regular expression
regexp, 71
regular expression

in action schedule, 71
repeat, 58, 62
repeat-clause, 63, 64

expression
free variables of, 62

in input pattern, 59
in output expression, 63

S (finite sequences)

Eker, Janneck CAL Language Report 107

INDEX INDEX

= U∗, 76
S∞ (sequences)

S ∪ SN, 76
complete partial order, 76
prefix order, 76

schedule
of actions, 70–73

finite state machine, 70–71
regular expression, 71–73

schedule, 70, 71
scope

of variable, see variable, scoping
scoping

lexical, 30
selectf

for collection, 92
for list, 95
for map, 96
for sequence, 93
for set, 94

selector
expression, 38–39

selector function, 91
of collection, 92
of list, 95
of map, 96
of sequence, 93
of set, 94

selector procedure
of collection, 92

selectp
definition, 92

Seq (type), 24, 93–94
finite, see List (type)
hasElement

definition, 94
index into, 93
indexer

definition, 94
infinite, 93
selector function, 93

sequence
is complete partial order, 76
prefix order, 76

Set (type), 24, 94–95
addElement , 94

comparison operators, 94
construction, 94
difference, 95
equality, 94
intersection, 95
selector function, 94
subset order, 94
union, 95

set
comprehension, 42, 43

simple, 43
construction, 42

side-effect free, 41
single import, 19
single port, 59

and input pattern, 58
single-channel channel selector, 60, 63
single-channel input pattern, 59
single-channel output expression, 63
single-port input pattern, 59–60
size

of collection, 92
state

of actor, 79
change, 57

statement, 48–56
assignment, 48–51

field, 48–49
indexed, 48–49
simple, 48–49

begin-end, 52
block, 48, 52
body, 16
call, 40, 51–52
choice, 48
choose, 54–56

backtracking, 56
semantics, 54

foreach, 48, 53–54
generator, 53
semantics, 53

head, 16
if, 48, 52
list of, 41
procedure call, 48, 51–52
while, 48, 52–53

Eker, Janneck CAL Language Report 108

INDEX INDEX

String (type), 25, 97
order, 97

subnamespace, 18
subset order, 94
substitutability, see types, substitutable
subtype relation, 22, 27

tag
in time system, 19

order, 19
of action, 69

denoted actions, 69
extension, 69
language, 70, 71
prefix order, 69

time, 77
temporal distance, see temporal metric
temporal metric, 77

definition, 77
trivial, 78
vs proper metric, 77

then, 39, 52
time, 19–20

adding delays, 19
addition, 77
delay, 19, 77

zero, 19
order, 77
tag, 19, 77

order, 19
zero delay, 77

time, 17, 20
time system, 19–20, 77–78

definition, 77
metric, 77

token, 6, 76
input, 57
lexical, see lexical token
output, 57
test for absence of, 73, 79

token expression
table (Fig. 8.2), 63
type of, 63

transition
and action, 57
of actor, 79

transition relation
of actor, 79

transition system, see actor transition
system

true, 24, 36, 40, 44, 52, 97
type assertion, 46–47
type bound, see actor, type parameter,

bound
type cast, see type assertion
type constructor, 23
type framework, 27

finite cover, 27
least upper bound, 27
subtype order, 27

type inference, 46
type parameter, 23

value, 23
types, 21–27

assignability, 22, 27
closure, 23

function, 41
free, 26
function, 41
mutable, 26, 28, 48
object, 21–23
of token, 59
optional, 21
parametric, 23
required, 24
simple, 23
structured, 25–26, 39, 48
substitutable, 22
subtypes, see subtype relation
syntax, 23–24
variable, 21–23

U (the universe of values), 76
unary operator

predefined, 90
universe

of token values, 76

value
of map, 96

var, 29, 40–42, 52–54, 57, 66
variable, 28–34, see assignment

Eker, Janneck CAL Language Report 109

INDEX INDEX

assignable, 49
binding, 28

assignable, 28
mutable, 28

bound, 28
declaration, 28

actor parameter, 28
closure parameter, 28
explicit, 28–29
in function, 40
in procedure, 41
input pattern, 28
not well-formed, 30

declaration set
well-formed, 31

dependency, 30
circular, 30

dependency relation, 32
dependency set, 30–34

definition, 30
example, 32
immediate, 30

free, 18, 30, 33
generator, 44
initialization expression, 29, 30
mutable, 26
name, 29
old, 36–37

and closures, 37
meaning, 37
restrictions, 37
translation, 37
use in action, 36

reference, 36–37
scoping, 30–34

in actions, 61–62
lexical, 30

shadowing, 30
stateful, 29, 41
stateless, 29
type, 29

variable type, see types, variable

while, 52
statement, 48

while-statement, 52–53

zero delay, 77
in time system, 19

Eker, Janneck CAL Language Report 110

BIBLIOGRAPHY BIBLIOGRAPHY

Bibliography

[1] The Ptolemy Project. Department EECS, University of California at Berke-
ley (http : //ptolemy.eecs.berkeley.edu). 6

[2] Harold Abelson and Gerald Jay Sussman. Structure and Interpretation of
Computer Programs. MIT Press, 2nd edition, 1999. 5

[3] Gul A. Agha. Actors: A Model of Concurrent Computation in Distributed
Systems. The MIT Press Series in Artificial Intelligence. MIT Press, 1986.
6

[4] Gul A. Agha, Ian A. Mason, Scott F. Smith, and Carolyn L. Talcott. A
foundation for actor computation. Journal of Functional Programming,
1993. 6

[5] J. B. Dennis. First version data flow procedure language. Technical Memo
MAC TM 61, MIT Lab. Comp. Sci., May 1975. 6

[6] Carl Hewitt. Viewing control structures as patterns of passing messages.
Journal of Artifical Intelligence, 8(3):323–363, June 1977. 6

[7] Jörn W. Janneck. Syntax and Semantics of Graphs—An approach to the
specification of visual notations for discrete event systems. PhD thesis,
ETH Zurich, Computer Engineering and Networks Laboratory, July 2000.
6, 77, 79

[8] Jörn W. Janneck. Actors and their composition. Technical Report
UCB/ERL 02/37, University of California at Berkeley, 2002. 7

[9] Gilles Kahn. The semantics of a simple language for parallel programming.
In Proceedings of the IFIP Congress. North-Holland Publishing Co., 1974.
6

[10] Edward A. Lee. A denotational semantics for dataflow with firing. Techni-
cal Report UCB/ERL M97/3, EECS, University of California at Berkeley,
January 1997. 6, 73, 77, 79, 104

[11] Edward A. Lee. Embedded software. In M. Zelkowitz, editor, Advances in
Computers, volume 56. Academic Press, 2002. to appear. 7

Eker, Janneck CAL Language Report 111

BIBLIOGRAPHY BIBLIOGRAPHY

[12] Edward A. Lee and Alberto Sangiovanni-Vincentelli. A denotational
framework for comparing models of computation. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 17(12):1217–
1229, December 1998. 7, 77

[13] Charles S. Pierce. How to make our ideas clear. In P. P. Wiener, editor,
Values in a Universe of Chance. 1878. 5

Eker, Janneck CAL Language Report 112

	Contents
	Introduction
	Actors and actor composition
	Language design: goals and principles
	Platform independence and compatibility

	I Language description
	Introductory remarks
	Lexical tokens
	Typographic conventions
	Syntax rules
	Notational idioms

	Structure of actor descriptions
	Namespaces and imports
	Time

	Data types
	Objects, variables, and types
	Type formats
	Required types
	Structured objects and their types
	Mutable objects and their types
	Type framework

	Variables
	Variable declarations
	Explicit variable declarations

	Variable scoping

	Expressions
	Literals
	Variable references
	Old variable references

	Function application
	Field selection
	Indexing
	Operators
	Conditional expressions
	Introducing a local scope
	Closures
	Lambda-expressions and function closures
	Proc-expressions and procedure closures
	Function and procedure declarations

	Comprehensions
	Simple collection expressions
	Comprehensions with generators

	Type assertion

	Statements
	Assignment
	Simple assignment
	Field assignment
	Assignment with indices
	Assigning to and from mutable variables

	Procedure call
	Statement blocks (begin ... end)
	If-Statement
	While-Statement
	Foreach-Statement
	Choose-Statement

	Actions
	Input patterns, and variable declarations
	Single-port input patterns
	Multiport input patterns
	Scoping of action variables

	Output expressions
	Delays
	On action selection: guards and other activation conditions
	Initialization actions

	Action-level control structures
	Action tags
	Action schedules
	Finite state machine schedules
	Regular expression schedules

	Priorities

	II Semantics
	Actor model
	Preliminaries
	Time systems
	Actor transition systems

	III Appendices
	Cal language syntax
	Actor
	Expressions
	Statements
	Actions
	Action control

	Keywords
	Basic runtime infrastructure
	Operator symbols
	Basic data types and their operations
	Collection[T]---collections
	Seq[T]---sequences
	Set[T] < Collection[T]---sets
	List[T] < Collection[T], Seq[T]---lists
	Map[K, V]---maps
	Number---numbers
	Character---characters
	String < List[Character]---strings
	Boolean---truth values
	Null---the null value

	Index
	Bibliography

