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Abstract. This paper extends the application of the Cantor metric as
a mathematical tool for defining causalities from pure discrete mod-
els to mixed-signal and hybrid models. Using the Cantor metric, which
maps timed signals, continuous or discrete, into a metric space, we define
causality as contractive properties of processes operating on these sig-
nals. Thus, the Banach fixed point theorem can be applies to establish
conditions for the existence, uniqueness, and liveness of the behaviors
for mixed-signal and hybrid systems. The results also provide theoretical
foundations for the simulation technologies for such systems, including
the time-marching strategy, evaluation of feedback loops, and the neces-
sity of supporting rollback.

1 Introduction

Engineering systems that exhibit both continuous and discrete dynamics have
obtained great attention from many perspectives, such as modeling, simulation,
control, and verification. Although continuous-time models and various discrete
models themselves are relatively well-understood, the integration of different
models imposes new questions on system properties such as definability (exis-
tence of behaviors), determinism (uniqueness of the behavior) and liveness (the
behavior extends to time co). In the context of hybrid automata (e.g. [1], [2]),
these questions have been analyzed from a state trajectory point of view [3],
[4], [5]. However, due to the explicit representation of continuous and discrete
states, the compositions (I/O composition in particular) of hybrid automata can
be quite involved, which makes state based analysis techniques not quite scalable
to complex systems [6].

Mixed-signal models, on the other hand, characterize that the signals con-
necting different components of a system may be continuous or discrete. Hybrid
automata can be examples for such components. Mixed-signal models hide the
implementation detail of each component, thus are widely used as a coordination
model in modeling languages and simulation tools, such as VHDL-AMS [7] and
Simulink [8].



This paper takes a denotational approach and studies the existence, unique-
ness, and liveness properties of mixed-signal models in a tagged-signal semantic
framework [9], under notions of various causalities defined using the Cantor met-
ric. This framework allows us to apply the Banach fixed point theorem to define
the denotational behavior for mixed-signal systems. The strength of this ap-
proach is its generality: causalities are defined based on the input and output
signals rather than on the implementation of the components, which makes the
analysis applicable to a wide variety of models, including pure discrete event
models [10], pure continuous-time models, hybrid automata, and practically all
timed systems.

A practical implication of the discussion on causalities is the simulation
strategies of mixed-signal and hybrid systems. By introducing a notion of ideal
ODE solvers, we abstract the simulation of continuous-time systems into a se-
quence of discrete operations. This discrete abstraction allow us to apply the
Banach fixed point iteration to show that the commonly used time-marching
simulation strategy is compatible with the denotational semantics, and it yields
a correct behavior if there exists one.

The rest of the paper is organized as the following. Section 2 gives an overview
of the tagged-signal model, with a focus on a formal definition of mixed-signal
processes. Section 3 defines three kinds of causalities and analyzes some typical
mixed-signal processes in terms of their causality properties. It gives a suffi-
cient condition for the existence, uniqueness, and liveness of the behaviors of
mixed-signal systems using the Banach fixed-point theorem. Section 4 applies
the causality concepts in the simulation of mixed-signal and hybrid systems, and
shows the rationale of the common simulation strategies.

2 Tagged-Signal Model

The tagged-signal model is a denotational semantics framework for a variety
of models of computation [9]. The model looks at the signals communicating
among a set of components (called processes), and defines the behaviors of the
processes as the set of signals they constrain.

2.1 Tags and Signals

In the tagged-signal model, an event e = (t,v) is a tag-value pair. That is, e
is a member of the set E =T x V, where T is a set of tags, and V is a set of
values. The set T' can be finite, countably infinite, or uncountable; it may also
be partially ordered or totally ordered. Here, the ordering relation is a reflexive,
transitive, and antisymmetric relation, denoted by <. The order defined on T
also defines the order of events in F.

A signal s is a set of events. That is, s € p(F), where p(F) is the power set
(i.e. the set of all subsets) of E. We denote by S = p(F) the set of all signals,
and by SV a N tuple of signals. A signal s is called functional or proper if it
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Fig. 1. This is neither a continuous-time signal nor a discrete-event signal.

is a (possibly partial®) function from T to V. That is, if e; = (t,v1) € s and
es = (t,v2) € s, then v; = vy. A proper signal can be written as a function
s: T — V, such that if e = (¢,v) € s, then s(t) = v. A signal s is called totally
ordered or ordinary if it is totally ordered with respect to the ordering relation
defined on E. In this paper, we only consider ordinary proper signals.

In the context of mixed-signal and hybrid system modeling, T represents
time. More precisely, T C R(J{ , where Ra' is the set of all positive real numbers
and zero, and T inherits the total ordering and metric from RS’ ForTh CTL, C T,
T, is called the prefix of Ty, if for all t € Ty and for all ¢/ € T, but ¢ ¢ T}, the
relation ¢ < ¢ holds. If 81 : T3 — V,s9 : To — V and s1(¢) = s2(t),Vt € T1,
then s7 is called the prefix of so, written as s; C so. In addition, we introduce
an empty value A to the value set, i.e. V.= R U {A}. A metric is not required
for the value set. We denote by A a signal that contains only empty events, and
Apn a N-tuple of such signals.

Under these definitions, the difference between various kinds of signals is
captured in the topologies of the tag and value sets. A continuous-time signal
has the entire Rar as its tags and the real numbers R as the value set. A partial
continuous-time signal is a function defined only on a connected prefix of R .
The prefix may be open or closed. In a degenerate case, an event defined on a
single point {0} is a partial continuous-time signal.

Intuitively, a discrete-event signal only takes non-empty values at a “discrete”
subset of T'. Formally, a set Ty C T is discrete if it is order isomorphic to a subset
of integers [10]. That is, there exists a bijective map between the tags and a subset
of integers that preserves the order. By introducing the empty value, a discrete-
event signal is defined on the entire tag set RO+ . A signal s is a discrete-event
signal if there exists a discrete subset Ty C Rg such that V¢ ¢ Ty, s(t) = A
Note that the signal shown in Figurel is neither a continuous-time signal nor a
discrete-event signal.

A continuous-time signal is not necessarily a continuous signal, which, in
addition to having a connected tag set, is also a continuous function from T to

3 A partial function is a function defined only on a subset of its domain.



R. A signal s on T is piecewise continuous, if there exist a discrete set Ty C T,
such that s is continuous on T'— Ty and right continuous on Tj.

2.2 Continuous, Discrete, and Mixed-Signal Processes

From a denotational point of view, a process P is a subset of SV for some N.
A particular signal tuple s € SV is said to satisfy the process if s € P. Thus, a
process is a set of possible behaviors. Intuitively, the implementation of a process
P has N ports and S™V are all possible signals on these ports. It is useful in the
context of this paper to have the notions of inputs and outputs of processes,
depending on whether the process constrains the signal. An input to a process
P C SV is an external constraint A C S¥ such that A N P is the total set
of acceptable behaviors under that input. A process is functional if the output
signals are given as a function of the input signals.

Viewing processes as sets of signal is a powerful concept, such that the compo-
sition of processes are simply reordering and projections of signal tuples, and the
composed behaviors are the intersection of component process behaviors. A com-
position of processes is definable if the behavior intersection is not empty; and
it is deterministic if the behavior intersection has exactly zero or one element.
Figure 2 shows the serial, serial/parallel, parallel, and feedback compositions of
two processes P; and P». Connecting the output of one process to the input of
another imposes a constraint that the two signal to be the same. A full discussion
of process composition is out of the scope of this paper, and can be found in [9].

We further distinguish the types of processes by the signals they contain. A
process P C SV is piecewise-continuous (or a continuous process, in short) if
all S in SV are (possibly partial) piecewise-continuous signals. Similarly, P is a
discrete-event process (or, a discrete process, in short) if all S in the tuple are
discrete-event signals. Some processes may contain both piecewise-continuous
and discrete-event signals in their behavior. Such processes are called mized-
signal processes. A mixed-signal system is a composition of processes in SV,
such that there exists N¢, Np, and S = SNe x §Np_ where SN is a tuple of
piecewise-continuous signals and S™V? is a tuple of discrete-event signals.

For example, an integrator is a continuous process. It takes an integrable
signal as input and produces an integrable output signal whose derivative is the
input signal almost everywhere. An ordinary differential system (ODS),

= f(z,u,t) (1)
y—g(x,u,t) (2)
z(0) = zo (3)

is also a continuous process, where u is the input signal, y is the output signal,
and x is the state variable. There are many examples of discrete processes. A time
delay process delays all events in the input signal with a specific amount of time.
An I/0 automaton can be viewed as a discrete process that does not introduce
delays from input events to output events. Timed I/O automata, however, are
discrete processes that manipulate both values and tags in the signals.



(8) serial composition (b) serial/parellel composition.

(c) parallel composition (d) feedback composition.

Fig. 2. Two processes Pi, P> and their compositions. I/O composition imposes ad-
ditional constraints on the possible behaviors of the processes, in the sense that the
signals on the connected arcs have to be the same.

Event generators are processes that have at least one continuous-time input
signal and discrete-event output signals. Waveform generators converts discrete-
event input signals to (usually piecewise) continuous output signals. They are ex-
amples of mixed-signal processes. Hybrid automata, in their most general forms,
can have both piecewise-continuous and discrete-event inputs and outputs, thus
are mixed-signal processes.

Notice that these definitions classify continuous and discrete processes by
the signals they exhibit, rather than their internal implementation. A discrete
process may be implemented internally by continuous-time differential equations
with event detection and waveform generation mechanisms. A hybrid automata
may only expose piecewise-continuous signals at its interface, in which case, it
is a continuous process.

3 Causality

Using the tagged-signal model allows us to study system behaviors as signals in
a signal space, in particular, a signal space with metric.



3.1 Cantor Metric and Causality

The Cantor metric is a metric that compares the distance among timed signals.
Consider a N tuple of (mixed) signals S™V defined on the tag set T C R . For
s,s' € SV, s(t) = [(t,v1), ..., (t,on)] T and §'(t) = [(t,0)), ..., (£, V)] T, we say
that s(t) # §'(t) if 3@ € {1,..N},s.t.,v; # v).

Definition 1. For two signals s,s’ € S, the Cantor metric defines the distance
between s,s’ as:

(s, ') = sup{pls(t) # /(1)) (1)

It is easy to check that this is indeed a metric, satisfying d(s,s’) > 0, d(s,s) =
0, d(s,s’) = d(¢/,s), and the triangle inequality. In fact, it is an ultrametric,
satisfying a stronger form of the triangle inequality:

d(s,s"”) < max(d(s,s’),d(s’,s")). (5)

Under this metric, two signals are close if they agree over a great amount
of time. It is also easy to verify that under the Cantor metric, the space of
mixed signals is complete, i.e. all Cauchy sequences of mixed signals converge to
a mixed signal.

We use the Cantor metric to define three increasingly stronger notions of
causality on functional processes:

Definition 2. A functional process P : ST — S© is causal if for all s,s’ € ST,
d(P(s), P(s")) < d(s,s'). (6)
Definition 3. A functional process P : ST — SO is strictly causal if for all
s,s’ e ST,
d(P(s), P(s')) < d(s,s'). (7)

Definition 4. A functional process P : ST — SO is §-causal if for all s,s' € ST,
there exists 0 < § < 1, s.t.

d(P(s), P(s')) <4 -d(s,s). (8)

Note that these definitions are compatible with but more precise than the
common understanding of causality, which is usually stated as “the output of a
process at time ¢ should not depend on inputs that are later than ¢.”

3.2 Causality of Continuous, Discrete, and Mixed-Signal Processes

In this section, we give some examples of continuous, discrete, and mixed-
signal processes, and analyze their causality properties. Unless otherwise stated,
throughout this section, we assume that P is a functional process P : ST — §¢
and s,s’ € ST.



Fig. 3. An ordinary differential equation as a process PopE.

Memoryless Processes Memoryless processes are point-wise operators on in-
put signals. That is, if P is memoryless and s(t) = s'(t), then P(s(t)) = P(s'(t)),
regardless of the other events in s and s’. Thus, a memoryless process is causal
but usually not strictly causal or §-causal.

Integrators An integrator is a continuous process that takes integrable piecewise-
continuous signals as input and produces a continuous signal as output. Let u
be an input signal and = be the corresponding output signal, then an integrator
implements:

z(t) = z(0) —|—/0 u(T)dr (9)

In the theory of Lebesgue integration (see e.g. [11]), for any ¢ € T', u(t) has
measure 0, thus, (t) depends only on «[0,¢) but not on u(t). For two inputs u
and v/, satisfying u(r) = v'(7),Vr € [0,t), the outputs of the integrator satisfies
z(r) = 2/(7),V7 € [0,t], even when u(r) # /(7). However, this useful insight
does not directly improve the causality of the integrator. In fact, an integrator
is not strictly causal, since d(z,z’) = d(u,u’).

Ordinary Differential Equations An ordinary differential equation (ODE)
&= f(z,t), (0) =g (10)

can be viewed as a process Popr mapping X, the set of all partial and complete
solutions of (10), to X, as shown in Figure 3. Formally, X = {z[0,tf]t; €
T, and z satisfies the ODE in interval [0,¢f]}. We define that the degenerate
partial continuous-time signal (0,z() € X. So, X is never empty.

Let M be the dimension of z, and z,2’ € X be two inputs to Popg with
d(x,2’) = 1/27, then, by continuity, =(7) = /(7). The local existence and
uniqueness theorem of ODE (see, e.g. [12]) states that if there exists o > 7 and
L,r > 0, such that f(x,t) satisfies the local Lipschitz condition:

1f (u,t) = f v, Ol < Lflu = oll, (11)

for all u,v € {z € RM| ||z — 2(7)|| < r} and for all t € [r, 0], then, there exists
T < w < o such that the ODE (10) has a unique solution on [r,w]. That is,
PopEg extends the agreement of the partial solution by w—7 amount, i.e. Popg is
strictly causal under the local Lipschitz condition with d(Popg(x), Pope(z')) =
1/2% < d(z,z").



Fig. 4. An ordinary differential system.

In addition, if the ODE satisfies global Lipschitz condition, such that there
is a smallest A > 0 and Popg extends the solution for at least A amount in
time for any inputs, then Popg is d-causal, with § = 1/ 24 The extension from
the local solution to the global solution will be further discussed in section 3.3.

An ODS (1)-(3) can be viewed as a composition of an ODE process with
input and a memoryless output map process, g, as shown in Figure 4.

If w is piecewise continuous and f is globally Lipschitz on its first argument,
the existence and uniqueness theorem of ODE guarantees that the ODE (1) and
(3) has a unique solution. It is causal from u to z. Similar to the integrator case,
z(t) does not depend on u(t), for any ¢ € R§ . But this does not directly improve
the causality. The memoryless output map (2) is also causal. Thus, an ordinary
differential system is causal under the global Lipschitz condition. Note that if
the output map g does not have w as its direct input, then y(¢) does not directly
depend on u(t).

Time-Event Generators Time-event generators take piecewise-continuous in-
put signals and generate discrete events at a predefined set of discrete time in-
stants. Given a discrete set of time points Ty = {t1,t2,...} C T, a time-event
generator Prpg : ST — S© is a process that for a piecewise-continuous input
se ST

G(s[0,Ty]) ifteTy

) (12)
A otherwise

Prpa(s)(t) = {
where G(s[0, Ty]) is a function of the input signal up to time Tj.

Typically, a time-event generator omits some values in the input signal, and
replace them with the empty value . Take a periodic sampler as an example,
where Ty contains a set of equidistance points. Let ts be the sampling period.
Suppose that for two inputs s,s’ € ST, d(s,s’) = 1/27, we examine the distance
of the output signals. Let [7] be the smallest element in T; that is greater than
or equal to 7. There are three cases:

1) if 7 ¢ Ty, then d(Preg(s), Prec(s’)) < 1/2[71 < 1/27, strictly causal.



2) if 7 € T; and s(7) = s'(7), then d(Prgc(s), Prec(s’)) < 1/207t) < 1/27,
strictly causal.
3) if 7 € T4 and s(7) # 8/(7), then d(Prgc(s), Prec(s’)) = 1/27, causal.

Thus, unless the generator samples right on a discontinuous point of the piecewise-
continuous input signal, it is strictly causal.

State-Event Generator Unlike time-event generators, a state-event generator
produces an event if the trajectory of the piecewise-continuous input satisfies
certain conditions. Typically, an output event is associated with a condition h
and a value assignment rule 7. For an input signal s € ST, a condition h(s) = 0
defines a surface in the value space RI. A discrete event e = (7,v) is in the
output of a state-event generator if h(s(7)) = 0 and there exists a nonempty
open interval (7/,7) such that h(s(t)) # 0,for ¢t € (7/,7). The assignment r
defines the value of e, i.e. v = r(s[0, 7]). We call this type of event zero-reaching
event. Similar to time-event generators, if at the event occurrence time the input
signal s is continuous, the process is strictly causal. Otherwise, the process is
simply causal.

Sometimes, it is useful to specify an event condition that also takes the
future trajectory into account. For example, a transverse event requires that the
input not stay on the surface h(s) = 0 after reaching the surface [13]. That is,
there also exists an open interval (7,7"), s.t. h(s(t)) # 0,for ¢t € (7,7"). This
includes zero-crossing events which require that the signal s be on two different
sides of the surface before and after the event occurrence. It also includes zero-
touching events which require that the signal s be on the same side of the surface
before and after the event occurrence. Although transverse events may seem non-
causal under this description, there are ways to define them using zero-reaching
condition and the Lie derivatives if at the event occurrence point the input signal
and the event surface are analytic [13].

Zero-Order Hold A zero-order hold (ZOH) process is one of the most primitive

type of waveform generators. Given a discrete-event signal sq = {(t1,v1), (t2,v2), ...

and an initial value vg, a zero-order hold process outputs a unique continuous-
time extension of s4, denoted by zoh(sg,vo), such that zoh(sq,vo)(t) = v;, for
t; <t < t;y1 and tog = 0. Obviously, zoh(sq,vg) is a piecewise-continuous signal,
and a zero-order hold process is causal but not strictly causal.

Sampled Differential Systems A sampled differential system, as studied in
discrete-time systems, is a composition of ZOH processes, ordinary differential
systems, and periodic samplers, as shown in Figure 5. Here we assume that the
input v and the output z have the same set of tags Ty, and that u does not feed
directly into the output map g.

Let t5 be the sampling period, and 0 € Ty. We order the elements in Ty =
{to,t1,...} such that tg = 0 and tg41 — t; = t, for k > 0. Let v,v' € ST be two
input signals to the sampled differential system, and assume d(v,v") = 1/27 # 0.



u= zoh<v,v_ >
ordinary differential Y /Periodic z
—>
system Sampler

Fig. 5. A sampled differential system provides a discrete interface at input v and output
z. The ordinary differential system process may be internally implemented by processes
shown in Figure 4.

Then, there must exist some index k such that 7 = ¢, € Ty. Since the ZOH
process is causal, d(u, ) = 1/27. However, for a differential system, (1) = 2/(7)
and y(7) = y'(7), even though u(7) # u'(7). As the periodic sampler samples
at 7, the output 2(7) = 2/(7). This equality will hold until the next sampling
time tjy1, i.e. d(z,2’) = 1/2%+1. Thus, from the input/output point of view, a
sampled differential system is §-causal, with § = 1/2%.

Hybrid Automata In the formalism of hybrid automata [1], there is a set
of discrete states, X, a set of continuous state variables X. At each discrete
state in X', the automaton is refined into an ordinary differential system on
some state variables in X. There are transitions among the discrete states. A
hybrid automaton may have both continuous and discrete inputs and outputs. A
discrete state o may have invariants that specify the condition that the system
can stay in o. If a invariant is violated, a discrete transition must be taken. A
transition may have guards and actions. The guards may depend on the discrete
and continuous input signal values and specify the conditions that the transition
may be taken. The actions is performed when the transition is taken, and may
include producing discrete events and reseting the values of the continuous state
variables in the destination discrete state.

Notice that in a hybrid automaton model, there is no mechanism to di-
rectly specify time delays from input events to output events. A transition is
instantaneous. If a reachable transition is triggered by an input event, and the
corresponding action produces an output event, then the hybrid automaton is
causal. The only way to introduce strict causality in a hybrid automaton is to
ensure that the automaton stays in a discrete state for some of time, so that the
differential system that refines the discrete state becomes effective, similarly for
d-causality.

3.3 Existence, Uniqueness, and Liveness

Causality plays a central role in the existence, uniqueness, and liveness of be-
haviors of mixed-signal systems.



It is easy to verify that acyclic I/O compositions (e.g. cases (a), (b), and (c)
in Figure 2) of functional processes are functional, and preserve causality. We
have also shown in the case of sampled differential systems that a composition
of causal and strictly causal processes — in this case, a ZOH process, an ODS
process, and a periodic sampler process — may have a stronger causality than
the individual processes. Functional processes have the property that given any
input signal in the domain of the process, there is exactly one output signal. So,
for acyclic compositions of functional processes with deterministic input signals,
a behavior exists and is unique.

Feedback compositions are more complicated. Through sorting and projec-
tion of signals in the signal tuples SV, a mixed-signal system with feedback can
be viewed as a function F : SV — SV It is not obvious whether there exists
any s € SV, such that F(s) = s (ezistence); if such s exists, whether it is unique
(uniqueness); and whether the signal is defined on the entire R (liveness). One
example of mixed-signal systems lacking the liveness property is the Zeno phe-
nomena where in a finite time interval there can be an infinite number of discrete
events.

From the definitions, the forms of causality are “contraction” relations among
input and output signals in a metric space, thus the Banach fixed point theorem
may ensure that a system with feedback loops has a unique behavior under
certain conditions. The Banach fixed point theorem states that for S complete,
(which is true for mixed-signal systems), if F' is d-causal, then there is exactly
one s € SV such that F(s) = s. This signal is called a fized point. Moreover, the
theorem also gives a constructive algorithm to find the fixed point. Given sg in
the domain of F', s is the limit of the sequence:

S1 :F(So),Sz :F(Sl),S,g :F(Sz),... (13)

Thus, the theorem gives a sufficient condition for existence and uniqueness of
the behavior of a mixed-signal system.

A direct application of the theorem to ordinary differential equations is the
obtainment of global unique solution under the global Lipschitz condition. Start-
ing with sg = {(0,20)}, a partial continuous signal in the solution space, each
application of the Banach fixed-point iteration corresponds to extending the
local solution for at least A amount of time into the future:

So E S1 E S2 E (14)

Since the sequence of solutions converges, it must embeds a Cauchy sequence,
i.e. d(sm,sk) — 0 as M > K — oo. Thus, the solution is unique on [0, 00).
Similar analysis can be applied to mixed-signal systems, where the initial signal
is Anp, X {(0,20)}, i.e. empty discrete events and the initial values for continuous
state variables.

The d-causality requirement is fairly strong. A closely related theorem (see
e.g. [14], chapter 4) states that if F is strictly causal and S is complete, then
there is at most one fixed point for F. Thus, strict causality guarantees deter-
minism, but does not ensure that a feedback system has a behavior, nor is it
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Fig. 6. The two-tank problem and its mixed-signal model.

enough to prevent Zeno phenomena. When we weaken the condition further, the
simple causality does not even provide determinism.

The J-causality requirement is also tight, in the sense that violation of this
condition may introduce Zeno phenomena or non-determinism. For example,
the two-tank problem is a classical hybrid system with a Zeno execution [15]. As
shown in Figure 6 (a), x; denotes the water level in tank ¢ € {1,2}, and v; > 0
is the constant flow of water out of tank i. Let w be the constant flow of water
into the system, delegated exclusively to either tank 1 or tank 2, controlled
by a switch. Let r; be the reference level of tank ¢, such that if z; = v;, an
alarm will be generated requesting the in-flow water to be switched to tank .
The switching logic is that whenever it receives an alarm, the in-flow water is
directed to the requested water tank instantaneously. We further assume that
x;(0) > 7y, for i = 1,2, that the in-flow water rate satisfies v; < w < vy + vo,
and that it is initially directed to tank 1. A mixed-signal model of this system
is shown in Figure 6(b).

Applying similar analysis as in section 3.2, the composition of the ZOH,
the ordinary differential system modeling the water tank, and the zero-reaching
event generator is a strictly causal process. The merge of discrete events is also
a causal process [10]. Thus, if the switching process does not introduce any
time delay, then the entire system is a feedback composition of a strictly causal
process. In fact, the system exhibits Zeno behavior that the in-flow water will
switch between the two water tanks infinitely many times within a finite time
interval. This Zeno phenomenon will not appear if the composition is §-causal:
for example, if the switching of in-flow water from one tank to another always
takes at least A amount of time, or if the water tank part of the system (processes
within the circle in Figure 6) is implemented as a sampled differential system
instead of using state-event detections.

4 Simulation Strategies

Existence and uniqueness theorems give a denotation of a system behavior. It
is of practical importance to compute the behavior operationally, and to answer



questions such as whether the operational semantics is a precise establishment
of the denotational semantics (a.k.a. the full abstraction problem), and if not,
how close they are.

It is not uncommon in the discussion of continuous-time and mixed-signal
simulations to realize that it is impossible to represent continuous-time wave-
forms in digital computers and that a numerical solution of an ODE is only
an approximation, and give up full abstraction immediately. Nevertheless, we
believe that it is possible to develop a discrete abstraction for continuous sys-
tems and provide an abstract operational semantics that is compatible with the
denotational semantics, and to discuss the simulation strategies in general, irre-
spective of the ODE solvers used.

To avoid the technicality of different kinds of ODE solvers and their nu-
merical accuracies, we introduce a notion of ideal ODE solvers. For an ordinary
differential system (1), given a known point z(t) on the trajectory, a time instant
t' > t, such that the ODE satisfies the Lipschitz condition in [¢,¢'], and known
input ult,t’), an ideal ODE solver gives the exact value of z(t'). So, an ideal
ODE solver operates discretely. Instead of trying to represent the waveform on
the entire time interval, it only computes the solution at the end point of that
interval. The notion of ideal ODE solvers is not completely unrealistic. Certain
kinds of ODEs can be solved analytically, such that an exact solution can be ob-
tained on any given time instant, as long as we ignore the error of representing
a real number by a floating point number, say, in double precision. A degenerate
form of this concept, applying to the ODE, & = 1, has been shown useful in the
verification of timed automata [1]. Practical numerical ODE solvers can only
give an approximation of z(¢’), but they operate in the same discrete way as an
ideal ODE solver.

Under this abstraction, the continuous-time simulation problem becomes how
to find the sequence of time points, such that conditions for the uniqueness of
solution are not violated in each interval. This is by no means a trivial problem,
especially when the continuous dynamics interacts with discrete-event processes.
The causality properties of mixed-signal processes contributes to the understand-
ing of this abstract operational semantics through the following observations.

Observation 1 For causal functional processes, if the input is the prefix of the
potentially infinite-length input signal up to time t, then the output is the prefiz
of the final output signal up to at least time t.

In most mixed-signal and hybrid system modeling environments, the processes
are implemented as components with states and firings, where the state of a
component at time ¢ summaries all the inputs before time ¢, and the firing of a
component at time ¢ computes the new state and the output of the component
at some ¢’ > t. Causality makes “state” a well-define notion. Applying Observa-
tion 1 iteratively implies that a mixed-signal system can be simulated by comput-
ing partial behaviors chronologically, a time-marching strategy adopted by most
mixed-signal and hybrid system simulators. That is, the simulator maintains a
global, monotonically increasing notion of time, and computes the behavior of



the system “step-by-step.” This strategy essentially implements the constructive
procedure in the Banach fixed point theorem, and will converge, in the sense of
the Cantor metric, to the denotational behavior if there is one. Thus, by using
an ideal ODE solver, we still obtain full abstraction.

Observation 2 For ODS (1) - (3) satisfying the Lipschitz condition in [t, ], if
the values x(t) of the state variables at time t are known, and the input ult,t’)
is known, then an ideal ODE solver can compute z(t').

The increase of the global notion of time from one Banach fixed point iter-
ation to the next corresponds to the step sizes in simulations. A key issue of
simulating continuous parts of a mixed-signal system is find the right ¢. Under
the assumption of an ideal ODE solver, for a continuous-time system, it is essen-
tial that the ODE satisfies the local Lipschitz condition in every such step. So,
each simulation step size should be within the value implied by the Lipschitz con-
dition. In numerical ODE solvers, this may be approximated by monitoring local
errors or the numerical convergence of integration methods. When the system
also contains discrete dynamics, discrete events may effect the local Lipschitz
conditions. In practice, breakpoints can be introduced to explicitly represent the
time instants when the local Lipschitz conditions are violated, and require that
no ODE solving steps go across break points [16].

The operation of an ideal ODE solver also requires it to know the input
ult,t') when it starts computing at time ¢. In the interaction of continuous and
discrete dynamics, u[t,t’) may be generated from future discrete events, which
may not be all known at time ¢. A practical solution for this problem is to perform
optimistic execution [16], where the simulator assumes that the inputs are fully
predictable and runs ahead of the global time. If the prediction is wrong, the
simulator rolls back to a previous state and recomputes.

Observation 3 For §-causal processes, strictly causal processes, and indirect
causal processes (i.e. causal processes with no direct I/0 dependencies, for ex-
ample, continuous or mized-signal processes that have at least one differential
equation type of relation from the input to the output), the output at time t does
not directly depend on the input at t.

This implies that we can schedule the execution order for feedback loops.
That is, at time ¢, we can evaluate a feedback loop by first letting the §-causal,
strictly causal, and indirect causal processes to produce their outputs at ¢. (These
outputs can be empty events.) Then, evaluate other processes in their I/O de-
pendency order.

As a summary, even with ideal ODE solvers, a correct mixed-signal simu-
lator still needs to support breakpoint, rollback, and proper managing of time
progression. Once a full abstraction is established through ideal ODE solvers,
further approximation are required when using numerical ODE solvers.



5 Conclusion

In this paper, the causality issues in mixed-signal and hybrid systems are studied
as part of their denotational semantics. Using the Cantor metric, we give precise
definitions of causality, strictly causality, and §-causality in mixed-signal systems.
With these definitions, we apply the Banach fixed point theorem to define the
denotational behavior for these systems. These causality results validate the
common mixed-signal and hybrid system simulation techniques, including the
time-marching strategy, evaluation of feedback loops, step size control, and the
necessity of supporting rollback.
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