(2]

3]

[4]

[5]

[6]

[7]
(8]
[9]
[10]

[11]

[12]
[13]

[14]

[15]

B. Char, K. Geddes, G. Gonnet, B. Leong, M. Monagan and S. Wilatt,Leaves: A Tutorial Introduction to Maple V
Springer-Verlag, New York, 1992.

S. Wolfram,Mathematica: A System for Doing Mathematics by Comp2iet ed., Addison-Wesley, Redwood City, CA,
1991.

K. Khiar and E. A. Lee, “Modeling Radar Systems Using Hierarchical Dataflemé. of IEEE Int. Conference on
Acoustics, Speech, and Signal Procesdiegroit, MI, May 8-12, 1995, pp. 3259-3262.

B. L. Evans, D. R. Firth, K. D. White, and E. A. Lee, “Automatic Generation of Programs that Jointly Optimize Charac-
teristics of Analog Filter Designs,” to appeBroc. of European Conference on Circuit Theory and Des\yigust 27-
31, 1995, Istanbul, Turkey.

G. P. Fettweis and L. Thiele, “Algebraic Recurrence Transformations for Massive Parall®lissh’Signal Processing
V, pp. 332-341, Oct. 1992.

P. P. Vaidyanathamultirate Systems and Filter Bankrentice-Hall, Englewood Cliffs, NJ, 1992.
Ptolemy TeamPtolemy 0.5 User’s ManuaDept. of EECS, University of California, Berkeley, CA, 1994.
A. V. Oppenheim and R. W. Schaf&iscrete-Time Signal Processingrentice-Hall, Englewood Cliffs, NJ, 1989.

M. M. Covell, An Algorithm Design Environment for Signal ProcessPlg. D. Thesis, Massachusetts Institute of Tech-
nology, Research Laboratory for Electronics Tech. Rep. 549, Cambridge, MA, Dec. 1989.

B. L. Evans, R. H. Bamberger, and J. H. McClellan, “Rules for Multidimensional Multirate Strucl&ieg, Trans. on
Signal Processingvol. 42, no. 4, pp. 762-771, April, 1994.

C. Moler, J. Little, and S. BangeMIATLAB User’s GuideThe MathWorks Inc., Natick, MA, 1989.

“Using the CPLEX Callable Library”, CPLEX Optimization, Inc., Suite 279, 930 Tahoe Blvd., Bldg. 802, Incline Vil-
lage, NV 89451-9436.

A. Kalavade and E. A. Lee, “A Global Criticality/ Local Phase Driven Algorithm for the Constrained Hardware/Software
Partitioning Problem”Proc. of CODES/CASHE, Third International Workshop on Hardware/Software Codésegro-
ble, France, Sept. 22-24, 1994, pp. 42-48.

A. Kalavade, J. L. Pino, and E. A. Lee, “Managing Complexity in Heterogeneous System Specification, Simulation, and
Synthesis”,Proc. of Int. Conference on Acoustics, Speech, and Signal Procedfdeig)it, MI, May 8-12, 1995, pp.
2833-2836.

Design flows are specified as graphical netlists. Conditionals and iterations are supported in the flow definition. Flows
can be described hierarchically. A tools is encapsulated within a Star — a basic block in Ptolemy. Tool encapsulation involves
writing scripts that call various programs, possibly on remote file systems. Tools can invoke programs with independent
graphical user interfaces. The tool writer need not worry about the underlying timestamps and filenames. Data attributes and
flow netlists are stored within the internal Ptolemy database.

DesignMakersupports both data-driven and demand-driven flow execution. It resolves tool dependencies and auto-
matically invokes tools. The underlying scheduler is a combination of dynamic dataflow and event-driven scbedigders.
Maker detects deadlocks when iterative flows are incorrectly specified (such as forward dependencies on non-optional inputs).
DesignMakeralso supports other features such as annotation of the design process and display of the flow status (blocked, run-
ning, and ready) at any point in the design process.

The design flow in Figure 4 can be specified in the DMM domain and managedisstgaMaker

5. CONCLUSION

System design is concerned with capturing all aspects of the design of a working system. The system as well as the
design process can be highly complex and heterogeneous. The design process should ideally handle systems composed of
hierarchy of sub-systems, in which each sub-systems may operate under a different computational model and may be imple-
mented by a wide variety of hardware and software technologies. The design process should support modeling, simulation,
and synthesis of heterogeneous systems.

This paper examines some of the roles that symbolic computation plays in assisting system simulation and design. At
a behavioral level, symbolic computation can compute parameters, generate new models, and optimize parameter settings. At
the synthesis level, symbolic computation can work in tandem with synthesis tools to rewrite cascade and parallel combina-
tions on components in sub-systems to meet design constraints. We have encoded the symbolic operations on signals and sy
tems in the Signal Processing Packages for Mathematica. We are currently working on connecting Mathematica to the Ptolemy
environment to complement its behavioral-level modeling. We are also working on connecting Mathematica to DesignMaker
to assist in the synthesis of systems.

Symbolic computation represents on type of tool that may be invoked in the iterative, recursive, and otherwise com-
plex flow of the system design process. The paper also discusses the qualities that a formal infrastructure for managing systen
design should have. The paper describes an implementation of this infrastructure called DesignMaker, implemented in the
Ptolemy environment, which includes the ability to manage the flow of tool invocations in an efficient manner using a graphi-
cal file dependency mechanism.

6. ACKNOWLEDGMENT

The Ptolemy project is supported by the Advanced Research Projects Agency and the U.S. Air Force (under the
RASSP program, contract F33615-93-C-1317), Semiconductor Research Corporation (project 95-DC-324), National Science
Foundation (MIP-9201605), the State of California MICRO program, and the following companies: Bell Northern Research,
Cadence, Dolby, Hitachi, Mentor Graphics, Mitsubishi, Motorola, NEC, Pacific Bell, Philips, and Rockwell. World Wide Web
information about the Ptolemy Project is located at WRb://ptolemy.eecs.berkeley.edu

7. REFERENCES

[1] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. “Ptolemy: A Framework for Simulating and Prototyping Heteroge-
neous Systemsfnt. Journal of Computer Simulatipspecial issue “Simulation Software Development,” Apr. 1994, vol. 4,
pp. 155-182.

Data Attributes Dependencies

Dependency

newData
max(Ti,) > min(Toy) param_changed

FileName

TimeStamp
FNnew '= FNjast ~ TSpew != TS)ast

Figure 6. Dependencies used for tool management.

The design flow is represented as a distributed data structure. Associated with a tool BaeaftagChanged) that
gets set when parameters of the tool change. Data associated with each port has three Fittrilbistes: , Time_Stamp ,
andOptional_Flag . File_Name and Time_Stamp represent the filename and the timestamp of the data, associated with
the most recent invocation of the tool. If thetional_Flag is set on a port, the tool can be invoked even if data is not
present on that port. Ports on which @gional_Flag is set are calledptional ports. Optional ports make it possible to
represent conditionals and iterations in flows.

Dependencies

Figure 6 shows the three types of dependencies supported in Dat\poraldependencies track the timestamps on
the input and output ports of tools. A tool is run if its output data is out-of-date, i.e., if any of its input data timastamps
newer than its output data timestarripata dependency ensures that a tool is run whenever the file received on its input ports
has either a filename or a timestamp that is different from the previous tool invo€atitirol dependency tracks parameter
changes; a tool is run if its parameters are modified.

Flow Management

Automatic flow invocation involves analyzing tool dependencies and invoking tools if required. A tool is said to be
enabledwhen all its non-optional input ports have data. Once enabled, its dependencies are examinedinkdbed(sun)
when at least one of its dependencies is alive. Two types of flow invocation mechanisms are desired: data-driven, and demand-
driven (Figure 7). In the data-driven approach, the flow scheduler traverses the flow according to precedences. The process
halts when all tools with live dependencies are exhausted. In the demand-driven mode, the user selects a tool for invocation.
The scheduler traverses the predecessors and runs all tools with live dependencies on the path.

4.3. Implementation features

The DMM framework described in Section 4.2 has been implemented as a domain in the Ptolemy envifbiement
flow manager is calleBDesignMaker.

Data-Driven Flow Invocation/\‘;

e

Demand-Driven Flow Invocation

D/\jgs»-&m
~

Figure 7. Flow invocation mechanisms.

* Modular and configurable flow specification mechanisms

For example, in Figure 4, the user might be interested in first developing the algorithm, not in the final implementation. At
this point only theParameter GeneratioandModel Generatioriools need to be invoked; subsequent tools need not be

run. Unnecessary tool invocations can be avoided if the flow specification is modular.

A number of design options is available at each step in the design process. For instance, the type of algebraic transforma-
tion could be a parameter to tidgebraic Transformatioriool. A particular set of transformations along with their
sequence could be selected by the user. SimilarlyH#ndware/Software Partitioriool can be one of: a human-inter-

vened manual partitioning, an exact but time consuming tool such as CPLEX [13] based on integer linear programming
techniques, or an efficient heuristic such as GCLP [14]. Depending on the available design time and desired accuracy, one
of these is selected. This selection can be done either by the user, or by embedding this design choice within the flow. A
design flow with a configurable flow specification mechanism is easily extensible.

e Mechanisms to track tool dependencies and automatically determine the sequence of tool invocations
The user should not have to keep track of tools that have already run and those that need to be run. Also, if a specific tool
is changed on the fly, the entire system need not be re-run; only those tools that are affected should be run. A mechanism
that automatically determines the sequence of tool invocations is needed. For instance, if the user changes the hardware
synthesis mechanism (perhaps a standard-cell based design instead of one based on field programmable gate arrays), the
system should only invoke the dependencies of the hardware synthesis tool (in thketeséSeneration).

e Managing consistency of data, tools, and flows

Detecting incompatibilities between tools and maintaining versions of the tools and design flows is necessary.

4.2. Framework for design methodology management

A design methodology specifies a sequence (flow) of tools that operate on data. Design methodology management
(DMM) is defined as “definition, execution, and control of design methodologies in a flexible and configurable way” [15].
Flow definition, dependency analysis, and automated flow execution are the critical issues in DMM. In this section we
describe the components of our DMM framework.

Flow, Tool, and Data Model

Figure 5 illustrates the key components of our DMM framework. A ddkigrs specified as a directed graph, where
nodes represent tools, and arcs specify the ordering betweemtmidsencapsulate actual programs; tool parameters specify
the arguments to these programs. A tool exchanges filenames with other toolporia its

FLOW MODEL TOOL MODEL DATA MODEL

filename
arameters
Tool 2— ¢p optional port PORT |

Port 1 i
> File_Name
Port2 | TOOL J|port M Time_Stamp

— P -
.
Param_Changed_Flag Optional_Flag

Design flow represented as a distributed data structure.

Tool 1 ®e | ToolN
i
(Param_Changed)

Time_Samp
Optional_Flag

Figure 5. Components of our DMM system.

Port1 |e [Port M |

ger matrices using an algebraic transformation called Smith form decomposition (analogous to eigendecomposition). These
kinds of algebraic operations are readily available in a symbolic computation environment such as Maple or Mathematica.

Like transformation rules at a fine level of computational granularity, transformation rules at a coarse level of compu-
tational granularity rewrite components in an algebraically equivalent, but not necessarily numerically equivalent, manner.
When transformation rules at a coarse level are applied to improve the performance of a sub-system’s implementation, they
could interfere with the transformation rules applied at a fine level. To avoid interference, the mechanism applying the trans-
formation rules should base its decisions about what rules to apply on feedback from the tools that will generate the implemen-
tation. In other words, the objective function being minimized by applying coarse-grain transformation rules should be based
on accurate measures of implementation costs. The design space of alternate implementation could be searched by hooking u,
a symbolic computation engine that can apply transformation rules to a tool that manages the conversion of system designs
into implementations. We have encoded a variety of transformation rules in Mathematica and are working on connecting the
rewriting facility to the design methodology management tool described in the next section.

4. DESIGN SPACE EXPLORATION

A typical design flow for algorithm-level design is shown in Figure 4. A number of tools operate on the original algo-
rithm specification to generate the final implementation. These include tools for algorithm design, simulation, and synthesis.
The algorithm design process could involve one or more of the algebraic computations discussed in Section 2, such as param-
eter generation and model optimization. The system can be simulated at different levels of abstraction. Algebraic transforma-
tions, such as those described in Section 3, may be applied to optimize the design before synthesis. Finally, a number of
hardware and software synthesis tools may be used to implement the system.

4.1. Requirements for efficient design space exploration

System-level design is not a push-button design process. It requires exploration of the design space and involves con-
siderable user interaction. Managing the complexity of this design process is a hard problem. The features needed for efficient
design space exploration include:

Source

Parameter Calculation| [Model Generation| | Model Optimization|

Design Generation

\

Algebraic Transformation

“—

Simulation v
Hardware/Softwarg
7 Partition
AV Ty

Synthesis
y Hardware| | Interface|| Software

Synthesis| |Synthesis| | Synthesis

Netlist Generation

Figure 4. A typical design flow.

would be to perform the resampling in stages of resampling by 3:2, 7:5, and 7:16, the factors of 147 and 160 [8]. (A demon-
stration by Tom M. Parks of the CD-to-DAT rate changer exists in the Ptolemy environment [8].)

Transformation rules for rewriting cascades and parallel combinations of signal processing structures have been
developed for one-dimensional operators (e.g. [7], [9], and [10]) and multidimensional operators (e.g. [7] and [11]). Transfor-
mation rules are expressed solely in terms of algebraic properties of operators, or are based on the mathematical definition of
specific operators. The former transformation rules rely on algebraic properties such as additivity, associativity, and commuta-
tivity. The latter transformation rules depend on the mathematical definition of each specific operator and how that operator
interacts with other operators. When a new operator is added, the transformation rules based on algebraic properties do not
have to be updated, but new transformation rules must be defined describing those interactions with other operators not cap-
tured in terms of algebraic properties. An example of the former is that the order of any two linear time-invariant aperators i
cascade can be switched, and an example of the latter is that upsampling by N followed by downsampling by N is the identity
system.

The applicability of those transformation rules that are based on the mathematical definition of operators may depend
on sophisticated algebraic operations. Figure 3 shows an example of a few multidimensional transformation rules. The appli-
cability of these rules depends on the decomposition of the downsampling and upsampling integer matrices into simpler inte-

— VL B tAL P 1TUL

Y

(a) Cascade in Smith form

— TV = T AL

Y

FAv o LV —

(b) Simplified cascade if Uy = U

— TV P TAL

Y

[0 VP S

(c) Simplified cascade from (b) with common factors removed

— TV P LA

Y

TAL, P VWV —

(d) Reversing the order of operations in (c) since A} and A}, are
coprime

PVA Ay

Y

— LV Ay,

(¢) Combining operations in (d) so that downsampling comes first

Figure 3. Multidimensional transformation rules for a upsampler by
integer matrix L in cascade with a downsampler by integer matrix M. [11]

andf is a constant that must be calculated for each set of pole locations. For optimal filter design, the poles will be spread out
in thes-plane and duplicate poles will not occur,Aocan be written in a closed differentiable form. The peak time can be
substituted in the step response to compute peak overshoot. We programmed these definitions in the symbolic algebra progran
Mathematica.

With these definitions, we can now experiment with a variety of cost functions and numerical optimization proce-
dures. In [5], we matched the analog filter design problem to a sequential quadratic programming (SQP) problem. SQP
requires that the objective function and constraints are twice differentiable, and works best when the gradients ofvéne objecti
function and constraints are explicitly computed and given to the program. We then programmed Mathematica to

« verify the differentiable real-valued formulas given above,

« define an objective function and constraints,

« compute the gradient of the objective function and constraints symbolically,

« convert the objective function, constraints, and their gradients into MATLAB [12] source code,
* generate a MATLAB script to run the optimization procedure.

The optimization procedure is based on SQP routimestr , in the MATLAB Optimization Toolbox. We usesbnstr to
verify the generated MATLAB code for the gradients of the objective function and the constraints.

Using our procedure, we optimized a fourth-order all-pole lowpass Butterworth filter in terms of its peak overshoot
and deviation from linear phase response in the passband. The optimization essentially trades off magnitude response for
lower peak overshoot and a more linear phase response, while keeping the magnitude response within specification. For the
optimized filter, the peak overshoot was reduced by 50% (from 16% to 8%) and the phase response in the passband becam:
nearly linear. The objective function used was continuous, real-valued, non-negative, and twice differentiable. It hd an initi
value of 1.17 which almost entirely due to the peak overshoot, and a final value diO'f.,?of which ninety-seven percent of
its value reflected the deviation from linear phase. Because we can compute the final value of the gradients, we could deter-
mine that the one of the second-order sections was twice as sensitive to perturbations than the other. [5]

3. TRANSFORMATIONS BASED ON ALGEBRAIC IDENTITIES

The previous section discussed symbolic computation at the behavioral level of system design. Symbolic computa-
tion can also be used at the synthesis level by applying transformations based on algebraic identities. At a fine goain level, f
example, single-step recurrence recursive computations involvingssoeiativebinary operation (e.g. addition) can be
transformed into an algebraically equivalent M-step recursion. The M-step recursion is not necessarily numerically equivalent
to the original recurrence equation, but it has M degrees of parallelism compared to one degree of parallelism in the original
recurrence relation. That is, the throughput can be increased by a factor of M, or alternatively, the clock rate can bg reduced
a factor of M. This strategy is used in carry look-ahead adders. The approach works for any associative binary operator, and
has been applied to multiplication and addition operations in linear filters, and the min/max and addition operators in the Vit-
erbi algorithm and dynamic programming [6].

In this section, we discuss applying transformation rules based on algebraic identities at a coarse level, i.e., at the
level of upsample and filter operators. For example, in one-dimensional sampling rate changing systems, one can rewrite the
cascade of an upsampler, filter, and downsampler in polyphase form so that the filtering is performed at the input sampling rate
instead of at the higher upsampled rate [7]. The polyphase form minimizes the number of addition and multiplication opera-
tions in the resampler. Transforming a rate changer to polyphase form involves exploiting several algebraic identities of the
operators in the cascade. The single stage polyphase form, however, may not always be the best solution. If the upsampling
factor L or downsampling factor M is a large integer, then it would become nearly impossible to design a proper lowpass anti-
aliasing and anti-imaging filter, because the filter’s cutoff frequency igthiryM). For example, converting compact disc
music sampled at 44.1 kHz to digital audio tape sampled at 48 kHz in one stage would require a resampling ratio of 147:160,
and a narrowband lowpass digital filter with a passband of 0 to 20 kHz and a stopband of 24 to 3528 kHz. The better approach

the Laplace representation below. From the Laplace representation, we derive the magnitude, phase, and step responses wri
ten as real-valued differentiable functions.

_ o (s=3) (s-2D P2
G =
© = e H (5—p) (s-nD

=1

We will now define the magnitude response, phase response, quality factors, and peak overshoot based on the transfel
function. We will derive these quantities as differentiable real-valued functions of real-valued variables to take advantage of
wider variety of optimization procedures. As a differentiable real-valued function, the magnitude is given by the follewing for
mula, in which we have factored the polynomials under the square root sign into Horner’s form because of its better numerical
properties:

r Dz
G (i) = []

2 2
=1 C|+d|

O O [P
+2(c—d) EF*)2+DC|2+d|2D Dlil ai+b§

15+ 23, -) B+ B+ 7T

The unwrapped phase response expressed as a real-valued differentiable function is

+d b O +b mN
O0G(jw) = — z Datar'DwCI o+ atar'BmCI + z Datarg(lo—l‘m+ atarEwTk-k[D

=1

The quality factor for each complex conjugate pole pair measures how close the pole jadaxie The lower the quality
factor, the less likely that the pole will cause oscillations in the output (e.g., as a response to noisy input). Thaa:tm@ktyf
for one complex conjugate pole pair and the effective quality fQ:thor the entire filter are given below:

G

N
+
o
~ N

a, !
Q = “2a, Qerr = ELH Qk% Qe Qerr2 0.5

=1

The time at which the peak value of the step function occurs can be approximated by the formula:

01 O v O GO 2 zD
B t t 10— Etitartl—[l] Yo = =
peak z peak peal$< Db Ela +ykak+b T k ~ D Da

where

C, = Z\Ak\ cos(OA) D, = —Z\Ak\ (a,cos(0A) +b,sin(0A)) A = [G(9) (s—p)] =,

input power constrained to be less or equﬂat\pAssuming that the input to the discrete-time channel has zero mean, the
optimization problem becomes

max max
fy (y) H(Y) = £, (y) :[ofv(y) (log, (fy(y))) dy

subject to the constraints

00 [

[hdy =1 [yR()dysP,+0’

—00

Applying Calculus of Variations, the resulting probability density function (pdf) and channel capacity, respectively, are

2

y
2 o PO
fy) = ——=——— " ¢ =19 m+2p
2n(P, +0) 2 7.0 §%0

The algebraic computations in this example yield the formula for the pdf of the output of the channel. We can then
convert the pdf into a behavioral model that outputs random numbers according the pdf. From the pdf, we compute the
channel capacity as a formula. Any system that uses these calculations should be linked to the algebraic calculations so tha
if they change, then the new values would be automatically propagated. The algebraic calculations should, in turn, be linked
to the choice of the channel. Now, if a different channel model is used, then a new pdf and channel capacity would be auto-
matically computed, and any systems depending of these calculations would be updated.

2.3. Optimization of Behavioral Models Governed by Mathematical Equations

When the behavior of a sub-system or a component of a sub-system can be described in terms of mathematical
equations, symbolic computation tools may be used to manipulate the underlying equations into a form suitable for use by a
numerical optimization program. Since the symbolic tool can perform the necessary algebra on the equations and then con-
vert the equations to source code, the design procedure can be carried out automatically, and without mathematical errors
and errors transcribing the formulas to source code. Furthermore, the procedure may allow a variety of alternative forms and
numerical optimization techniques to be tried based on the same behavioral equations.

As an example, we will consider computing pole and zero locations of an analog lowpass filter to jointly optimize
the filter for multiple characteristics subject to multiple types of constraints. In particular, we will jointly optimizegfor ma
nitude response, phase response, quality factors, and peak overshoot, subject to constraints on the magnitude response, quz
ity factors, and peak overshoot [5]. The underlying representation of the behavioral model israceshpiex conjugate
polespk = akij b (such that < 0) andr complex conjugate zeroes=c, £ j d (such that <nandc, <0 for alll). The
underlying mathematical representation is the Laplace domain of the filter transfer function. We give the factored form of

2.1. Parameter Calculations

Many parameters in signal processing and communications systems are determined by algebraic computation. In a
typical (binary) digital communications systems, the receiver output is the result of a matched filter, a sampler, and a thresh-
old device. The optimal value of the threshold level depends on the detection method used (e.g. maximum likelihood), the
mean values of the two transmitted pulses, and the probabilities of the occurrence of the two symbols. When the detection
method is changed, the underlying algebra that solves for the closed form of the optimal threshold changes. Other calcula-
tions might involve indefinite integration, symbolic differentiation, differential equation solving, and calculus of variations.
We would like to maintain a record of the algebraic calculations with the sub-system being designed.

A powerful application of symbolic parameter calculation is to compute parameters that depend on inherited
parameters. The values of the inherited parameters are not known until the overall system is simulated or synthesized, so the
inherited parameters are manipulated as symbolic quantities. This approach can add flexibility to components which are rep-
licated, e.g. in parallel or cascaded combinations, a parameterized number of times. Figure 2 shows an example in the
Ptolemy environment of a sub-system to generate a square wave based on a finite number of its Fourier components. The
formula for the Fourier coefficients is fixed in the definition of the system as @1 ¢ 1)), wherd is the instance number
of the replicated structure. The value of the instance number is set by the higher-order function when it replicates (maps) the
functional gain block [4]. In this example, the signal being approximated is fixed in the definition of the system, and so is its
Fourier series formula. With support for symbolic computation, the signal could be a parameter of the system, and the Fou-
rier series can be computed when the sub-system is simulated or synthesized.

Approximate a Square Wave by a
Finite Number of Sinusoids

parameter_map:

gain = 4/(P]*(2*instance_number-1))
singen i
. /—\
° ° >
° col ous U
Add Xgrapti” ©
etc. etc.
MapGr
SrcGr
parameter_map:
frequency = 2*PI*(2*instance_number-1)/period
Figure 2. Square wave generation using a finite number of Fourier components.

2.2. Model Generation

Symbolic calculation can be used to generate a complete model for a subsystem component. For example, we
could derive a model for the outpubf a discrete-time channel operating at full capacity, given that the channel has contin-
uous-valued inputs, corrupts the inputs with zero-mean additive white Gaussian noise with wargentchas its average

system-level modeling cosimulatio symbolic
: : discrete
imperative FSMs dataflow event
AN /
N\ /
synthegis \ /
partitioning
i software ASIC logic
comprier synthesis synthesis synthesis
| \\// | | |
Y Y Y y
execution execution ASIC logic
model model model model
_ _ _ —(cosimulation
detail modeling and simulation
Figure 1. Heterogeneity in system-level design of signal processing and

communications systems.

els described by mathematical equations, as discussed in Section 2. Section 3 discusses applying algebraic identities in sim.
plifying and rearranging combinations of components of behavioral models as one method to explore the design space of

alternate implementations, e.g. in system synthesis. These two sections discuss automating the kinds of calculations that
engineers might do on scratch paper and then discard. The symbolic calculations can be saved for future reference and mod
ification. The next step is to have these calculations performed whenever the underlying assumptions change. Tracking

parameter dependencies and tool invocations is part of an overall design management infrastructure. Design managemen
issues also include specifying and managing complex design flows and maintaining consistency of design data and flows. In
order to manage the complexity of this design process, an infrastructure that manages these issues, transparent to the user,

presented in Section 4. These design management concepts have been implemented in the Ptolemy [1] environment.

2. ALGEBRAIC COMPUTATION

Many symbolic tools can perform symbolic algebra and symbolic calculus, e.g. Maple [2] and Mathematica [3].
Based on these abilities, the symbolic tools can work with signals and systems, and their parameters, in terms of formulas.
In this section, we discuss the use of symbolic tools to compute free parameters (Section 2.1), derive new behavioral models
(Section 2.2), and optimize behavioral models (Section 2.3). Ultimately, we would store the symbolic computations as part
of the system design process so that designers could follow and modify the underlying computations.

Proc. 1995 SPIE Int. Sym. on Advanced Algorithms, Architectures, and Implementations

Symbolic Computation in System Simulation and Design

Brian L. Evans, Steve X. Gu, Asawaree Kalavade, and Edward A. Lee

Dept. of Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720-1770, USA
{ble,sgu,kalavade,eal}@eecs.berkeley.edu

ABSTRACT

This paper examines some of the roles that symbolic computation plays in assisting system-level simulation and
design. By symbolic computation, we mean programs like Mathematica that perform symbolic algebra and apply transfor-
mation rules based on algebraic identities. At a behavioral level, symbolic computation can compute parameters, generate
new models, and optimize parameter settings. At the synthesis level, symbolic computation can work in tandem with syn-
thesis tools to rewrite cascade and parallel combinations on components in sub-systems to meet design constraints. Sym:-
bolic computation represents one type of tool that may be invoked in the complex flow of the system design process. The
paper discusses the qualities that a formal infrastructure for managing system design should have. The paper also describe
an implementation of this infrastructure called DesignMaker, implemented in the Ptolemy environment, which manages the
flow of tool invocations in an efficient manner using a graphical file dependency mechanism.

Keywords: behavioral modeling, design methodology management, behavioral optimization, analog filter design
1. INTRODUCTION

This paper discusses aspects of the design and simulation of complex systems. At the top level, the system may be
composed of many sub-systems, and those sub-systems in turn may be composed of other sub-systems. Each sub-syste
may operate under a different computational model and may ultimately be mapped to one or more hardware and software
implementation technologies. A system may therefore be heterogeneous in the computational models and implementation
technologies it uses.

The primary issues involved in designing heterogenous systems are system modeling, simulation, and synthesis.
Modelinginvolves grouping algorithms operating under the same computational model into sub-systems and grouping the
sub-systems into a hierarchy to describe the behavior of the overall sgsteutationis necessary to validate the behav-
ioral modeling of the system, as well as any synthesized implementations of the system. Because simulation requires the
interaction of many different computational models through the exchange data and control information, it is often called
cosimulation Synthesisnvolves mapping the entire system into hardware and software. The computational models used by
some sub-systems may lend themselves to either a hardware or software implementation, but other computational models
are better implemented by partitioning the sub-system components into hardware and software. Many possible choices exist
for a viable hardware and software implementation.

Figure 1 depicts one view of heterogeneity in system-level design for signal processing and communications sys-
tems. In these systems, the processing of data can often be described in terms of dataflow graphs, and the control logic in
terms of finite state machines (FSMs). Timing circuitry can be modeled using discrete-event semantics. Many of the opera-
tions that do not fall into one of these models may be captured using an imperative specification, such as the C programming
language or a scripting language. For synthesis, imperative languages are naturally matched to software implementations,
and discrete-event semantics are naturally matched to hardware implementations. FSM and dataflow sub-systems, however
could be partitioned into hardware and software.

Symbolic computation plays a variety of roles in system design and simulation. By symbolic computation, we
mean performing symbolic algebra and applying transformation rules based on algebraic identities. In system modeling,
symbolic computation can perform algebraic calculations of parameters and optimize parameter values of behavioral mod-

