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Abstract - The paper is concerned with the timing analysis of a class

digital systems we call mixed asynchronous{synchronous systems. In

such a system, each computation module is either synchronous (i.e. clocked)

or asynchronous (i.e. selftimed). The communication between modules is

assumed to be selftimed for all modules. We introduce a graph model

called MASS for describing the timing behaviour of such architectures.

The graph contains two kinds of nodes, synchronous and asynchronous

nodes. The operation model of a MASS is similar to that of a timed

marked graph, however, additional schedule constraints are imposed on

synchronous nodes: A synchronous node can only �re at ticks of its local

module clock. We analyze the behaviour of MASS, in particular period,

periodicity and maximal throughput rate.

Introduction

This paper treats the timing analysis of a class of architectures that can

be characterized by selftimed communication of either synchronous (clocked)

and/or selftimed computation modules. We call such architectures mixed

asynchronous{synchronous systems.

Motivation In pure synchronous systems, a periodic clock signal is used

to control its state. However, in complex digital systems, it is not possible to

tie all modules to the same clock for the following reasons:

� Within the system, clocking signals arrive at the computation modules

with possibly di�erent delays (clock skew).

� The maximal clock rate is determined by the slowest subsystem.

Today, architectures that consist of a combination of dedicated circuits for

carrying out time critical computations (i.e. VLSI circuits) and general pur-

pose components (e.g., memory blocks, A/D and D/A converters, DSPs, etc.)

are becoming increasingly attractive. Very often, they contain asynchronous

components such as selftimed computation and communication modules for

the following reasons:



� Most of existing digital systems have selftimed interfaces.

� Selftimed computation is in general faster than any equivalent syn-

chronous computation.

� Selftimed communication is reliable, e.g., robust, delay{insensitive.

At a certain point in the design hierarchy, however, the communication costs

(handshake hardware) for building completely selftimed systems would be in-

tolerable. As a consequence, there is an optimumground for the structure of a

system where we do not have a monolithic synchronous system, but a mixture

of synchronous and selftimed components. Some of these architectures are

also referred to as globally asynchronous, locally synchronous systems (GALS)

([Sha84],[WB93]). For a discussion on advantages and disadvantages of syn-

chronous, asynchronous and mixed styles, see [GJ93]. Aspects of describing

such systems can be found in [Sei80], [Sha84] and [WB93]. Whereas [Sei80]

and [Sha84] describe implementation aspects, [WB93] describes a language

oriented approach to the design of GALS. The generation of the hardware of

the asynchronous parts is done using delay insensitive elements [Sut89].

Goals Unfortunately, none of the work described above proposes a model

that enables the determination of the exact timing behavior of a system con-

taining synchronous and asynchronous modules communicatingasynchronous-

ly. Here, we are concerned with an exact analysis of the timing of such sys-

tems, e.g., in determining the throughput rate, and compare those results to

existing results in the domain of selftimed architectures and synchronous ar-

chitectures. Primarily, our concern is to generate a timingmodel that satis�es

the following requirements:

� exactness: The model should mirror the exact timing behaviour of

mixed asynchronous{synchronous systems.

� simplicity: In order to be amenable for CAD, the model should be as

simple as possible and abstract from implementation details.

� generality: The model should be general, e.g., it should be able to de-

scribe GALS (all nodes are synchronous nodes) or purely selftimed ar-

chitectures (all nodes are asynchronous nodes) as special cases.

MASS- A graph model for mixed synchronous{asynchronous sys-

tems The theory of mixed asynchronous{synchronous systems as introduced

here combines and makes use of the theories of both synchronous and self-

timed architecture design. In the realm of synchronous architecture design,

Leiserson et al. ([LRS83]) have developed a theory for analysis and optimiza-

tion of synchronous circuits modeled by signal 
ow graphs. For modeling

selftimed communication and computation, Reiter [Rei68] describes a graph

model called computation graph. Sometimes, these graphs are also called

marked graphs; for a classi�cation see e.g. [Pet81]. In [Rei68], it is shown that

under certain conditions, systems modeled by these graphs have an asymp-

totically periodic behaviour and that the minimal period of such a system is



given by the maximal cycle mean. A detailed analysis of this class of discrete

event systems is contained in [BCOQ92].

Based on these results, we will now de�ne a graph model called MASS

(mixed asynchronous{synchronous system) that is basically an extended mar-

ked graph with two kinds of nodes: synchronous and asynchronous nodes.

Whereas the �ring rule for asynchronous nodes is similar to nodes in marked

graphs (a node representing a computation module can commence its opera-

tion if all incoming arcs contain valid data), a synchronous node in a MASS

can only start or �nish its computation at a tick of its local module clock.

A MASS is therefore basically a marked graph with a modi�ed model of

computation.

We assume that the reader is familiar with the notion of a marked graph

and its model of computation. For more details, see [Pet81], [BCOQ92] and

references therein.

De�nition 1 (Mixed Asynchronous{Synchronous System) A mixed

asynchronous{synchronous system (MASS) denotes an extended marked graph

G = (V;A; d; h; p) with

� nodes V = fv1; v2; � � � ; vjV jg representing the set of computation mod-

ules. V is partitioned into disjoint subsets VA and VS , corresponding to

asynchronous and synchronous nodes, respectively.

� arcs A = fa1; a2; � � � ; ajAjg, where any arc is an ordered pair of nodes

ap = (vi; vj). ap represents a communication (FIFO-like) queue between

modules vi and vj .

� a distance function d : A ! Z�0, which assigns the number of initial

tokens in the queue associated with each arc, and

� a weight function h : A ! R�0 which denotes the holding time of a

token in the queue associated with each arc. In addition,

� the function p : V ! R assigns a clock phase 0 � pi < 1 to each

synchronous node vi 2 VS . For vi 2 VA, pi = 0 holds.

Hence, in this paper, we restrict ourselves to a common clock period for all

synchronous nodes. Its value is normalized to 1. With each synchronous node

vj there is associated a local clock phase pj, i.e. the local clock is delayed

with respect to the global one by pj. As a consequence, the time instances �j
when a synchronous node can complete an operation is constrained as follows:

�j � pj 2 Z

This restriction is motivated by the fact that a synchronous module can deliver

a value at its local clock ticks only. Therefore, the �ring of the node is

delayed until the next clock event. In order to simplify the notation, each

asynchronous node is assigned the clock phase pi = 0.

The following example clari�es the chosen representation of mixed asyn{

chronous{synchronous systems.



Example 1 Fig. 1 shows a MASS with two nodes. The initial tokens are

represented by dots, the weights are the numbers printed near the arcs. Sup-

pose that node v2 is a synchronous node with the local clock phase p2 = 0:1.

By de�nition, we have p1 = 0 as v1 is an asynchronous node.

2.5

2

3.5v1 v2

p  = 0.12

:  synchronous node

:  asynchronous node

Figure 1: Example of a mixed asynchronous{synchronous system

In order to understand the scheduling of nodes in the evolution of �ring

events, we introduce the notion of unfolding.

De�nition 2 (Unfolding) The unfolding of a MASS G = (V;A; d; h; p) is

an in�nite directed graph �(G) = (V�; A�; h�; p�) where

1. V� contains nodes vi(k) for all vi 2 V and for all integers k > �maxfdij :

vj 2 V such that (vi; vj) 2 Ag 1

2. A� = f(vi(k � dij); vj(k)) : (vi; vj) 2 A ^ k 2 Z>0g,

3. to each arc in A� there is associated the weight of the corresponding

arc in G, i.e. h� : A� ! R with h�((vi(k � dij); vj(k))) = hij for all

(vi(k � dij); vj(k)) 2 A�.

4. to each node vi(k) 2 V� there is associated the clock phase pi of the

corresponding node in G, i.e. p� : V� ! R with p�(vi(k)) = pi for all

vi(k) 2 V�.

A node vi(k) of the unfolding represents the kth �ring of node vi in the

MASS. An edge from vi(k) to vj(l) denotes the fact that the lth �ring of node

vj can take place only after the kth �ring of node vi. The nodes vi(k) for

k � 0 represent the initialization of the marked graph, i.e. the placement of

dij tokens into the queue corresponding to arc (vi; vj).

As one of our results, admissible schedules for MASS must satisfy the

following conditions:

De�nition 3 (Admissible Schedule) An admissible schedule function of

a mixed asynchronous{synchronous system is a function � : V� ! R�0 that

satis�es

1We are using the simpler notation dij for denoting d((vi; vj)). Similarly, hij is used
for denoting h((vi; vj)).



1. �i(k)
� � 0 for all vi(k) 2 V�,

2. �j(k)
� � Fj(�i(k � dij)

� + h�ij) for all (vi(k � dij); vj(k)) 2 A�

where Fj(a) = a if vj 2 VA, Fj(a) = dae if vj 2 VS , and �i(k)
� =

�i(k)� pi, h
�
ij = hij + pi � pj.

Example 2 Consider again the MASS in Example 1. Its unfolding is shown

in Fig. 2. To the nodes, there are associated the earliest possible �ring times

�j(k). For example, by looking at node v2(2) it can be seen that the second

�ring of the synchronous node v2 occurs at time �2(2) = 9:1 as �1(2)+ 3:5 =

8:5 has been rounded up to the next integer plus p2 = 0:1.

v

v
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Figure 2: Unfolding of the system shown in Fig. 1

In the following, we are interested in the periodic behavior of a MASS and

in the determination of its maximal throughput rate. Recall that the (through-

put) rate R of an admissible schedule � of a marked graph G is de�ned by

R(�) = 1=P (�) with the average period P (�) = maxflimk!1 �i(k)=k : vi 2

V g and that the maximal rate is given by Rmax = 1=Pmin where Pmin =

minfP (�) : � is an admissible scheduleg. A maximal{rate schedule � sat-

is�es P (�) = Pmin. Pmin is often referred to as the minimal average period.

Furthermore, Pmin = Pcm where Pcm is called the maximal cycle mean of a

marked graph G and is de�ned by Pcm = maxf

P
(vi;vj)2W

hijP
(vi;vj)2W

dij
: W 2 C(G)g.

Here, W contains all arcs in a directed cycle and C(G) contains all simple

directed cycles of G. Keeping these de�nitions and results for marked graphs

in mind, we will determine the maximal throughput rates for MASS. Looking

at the de�nition of unfolding, it is obvious that one possible maximal{rate

schedule is obtained if each node �res as soon as it is enabled. This fact is

elaborated in the following Theorem.

Theorem 1 (Free Schedule) The following conditions for the free schedule

of a MASS are equivalent:



1. There is no admissible schedule with smaller �ring times �i(k).

2. �j(k)
� = maxf0; Fj(�i(k � dij)

� + h�ij) : (vi(k � dij); vj(k)) 2 A�g

The free schedule is a maximal{rate schedule.

Proof: Let us suppose that there is a schedule with a smaller kth �ring

time �i(k) for node vi. Comparing the second condition with condition 2. in

De�nition 3 yields that one of the predecessors of vi(k) must have a smaller

�ring time, too. Using induction and condition 1. in De�nition 3, this leads

to a contradiction. Now, suppose that for some node vi(k), we have �j(k)
� >

maxf0; Fj(�i(k � dij)
� + h�ij) : (vi(k � dij); vj(k)) 2 A�g. Then the �ring

time �i(k) can be reduced without violating condition 1. or 2. in De�nition

3. The free schedule has the maximal rate.

Note that the above theorem is closely related to Bellman's shortest path

equations. Consequently, the free schedule can be computed by solving a

variation of a longest path algorithm on the unfolding:

1. The nodes of the unfolding are ordered topologically, i.e. if there is

an edge from node vi(k) to node vj(l), than vi(k) precedes vj(l) in the

ordering.

2. Then, the node potentials �j(k) are successively determined according

to �j(k)
� = maxf0; Fj(�i(k � dij)

� + h�ij) : (vi(k � dij); vj(k)) 2 A�g.

Now, bounds on the average period of the above determined maximal{rate

schedule will be given which can be related to the maximal cycle mean of

marked graphs. Therefore, the bounds may be computed in time O(jV j jAj)

using a modi�cation of Karp's algorithm described in [Kar78].

Theorem 2 (Rate Bounds) The minimal average period Pmin of a MASS

G = (V;A; d; h; p) can be bounded by

Pcm(Ĝ) � Pmin � Pcm( ~G)

where Pcm(Ĝ) and Pcm( ~G) denote the maximal cycle means of the marked

graphs Ĝ and ~G, respectively, which are de�ned as follows:

� Ĝ = (V;A; d; ĥ) with

ĥ =

8<
:

h�ij : vj 2 VA
dh�ije : vi; vj 2 VS
h�ij : vi 2 VA; vj 2 VS

� ~G = (V;A; d;~h) with

~h =

8<
:

h�ij : vj 2 VA
dh�ije : vi; vj 2 VS
h�ij + 1 : vi 2 VA; vj 2 VS



Proof: The �ring times of G, Ĝ and ~G in the case of free schedules are de-

noted �i(k), �̂i(k) and ~�i(k), respectively. Moreover, remember that �i(k)
� =

�i(k)� pi and h�ij = hij + pi � pj.

If we show that for free schedules in G, Ĝ and ~G the relations �̂i(k) �

�i(k)
� � ~�i(k) hold for all nodes vi 2 V , k 2 Z>0, then Pcm(Ĝ) � Pmin �

Pcm( ~G) holds as Pmin(Ĝ) = Pcm(Ĝ) and Pmin( ~G) = Pcm( ~G).

For all nodes without predecessor we have �̂i(k) = ~�i(k) = �i(k)
� =

0. Consequently, the initial conditions for all unfoldings are identical with

�̂i(k) = �i(k)
� = ~�i(k).

Let us consider an edge (vi(k � dij); vj(k)) in the unfoldings of G, Ĝ and
~G. We will show now that the inequality implied by such an edge in G

�j(k)
� � �i(k � dij)

� � rij

for some rij is less strict in the case of Ĝ

�j(k)
� � �i(k � dij)

� � rij � � ; � � 0

and stricter in the case of ~G

�j(k)
� � �i(k � dij)

� � rij + 
 ; 
 � 0

As this holds for all arcs, �̂i(k) � �i(k)
� � ~�i(k) follows because of the

monotonicity of the Bellman-type equations for free schedules, see Theorem

1. Let us consider three cases

vj 2 VA: In the unfolding of G we have �j(k)
� � �i(k � dij)

� + h�ij which

leads to �j(k)
� � �i(k� dij)

� � h�ij. As ĥij =
~hij = h�ij in this case, we

have � = 
 = 0.

vi; vj 2 VS : In the unfolding of G we have �j(k)
� � d�i(k � dij)

� + h�ije.

As �i(k � dij)
� is integral (see De�nition 3), we have �j(k)

� � �i(k �

dij)
� + dh�ije and �j(k)

� � �i(k� dij)
� � dh�ije. As ĥij =

~hij = dh�ije in

this case, we have � = 
 = 0.

vi 2 VA, vj 2 VS : In the unfolding of G we have �j(k)
� � d�i(k�dij)

�+h�ije

which leads to �j(k)
���i(k�dij)

� � d�i(k�dij)
�+h�ije��i(k�dij)

�.

Consequently, we have rij = d�i(k � dij)
� + h�ije � �i(k � dij)

�. Now,

rij � 1 < h�ij � rij and ĥij = h�ij which leads to ĥij = rij � � with

1 > � � 0. On the other hand, ~hij = h�ij + 1 leads to ~hij = rij + 
 with

1 � 
 > 0.

Example 3 We will now consider the MASS on the left hand side of Fig. 3

with an asynchronous node v1 and a synchronous node v2. In the middle, resp.

on the right hand side of Fig. 3, we have the associated marked graphs ~G and



Ĝ. The maximal cycle means of the associated marked graphs which determine

the bounds for Pmin are Pcm( ~G) = 3:25 and Pcm(Ĝ) = 3:1, respectively.

Without considering the unfolding of G, we can say according to Theorem 2

that 3:1 � Pmin(G) � 3:25. By the determination of a maximal{rate schedule

for G using Theorem 1, we get Pmin(G) = 28=9.

3.1 1.25

1

3.1 1.25

2

3.1 1.25

1v1

v2

v1 v1

v2 v2

p  = 0
2

G G G
~ ^

Figure 3: Example of a MASS and associated marked graphs ~G and Ĝ

From the above theorem it should be obvious that if a MASS contains

no arcs from asynchronous nodes to synchronous nodes, we have Pcm(Ĝ) =

Pmin = Pcm( ~G) because Ĝ = ~G.

It turns out that one can analyze the behavior of MASS which contain

synchronous nodes only in much more detail. In particular, we are interested

in the determination of a maximal{rate periodic schedule in this case. We al-

ready know that the corresponding period is Pcm(Ĝ) where Ĝ = (V;A; d; dh�e).

As a simple consequence of the proof given for the above theorem, we can

even compare the free schedules of both graphs directly.

Corollary 1 The free schedule of a MASS G = (V;A; d; h; p) containing no

arcs from asynchronous to synchronous nodes is identical to that of the cor-

responding marked graph Ĝ de�ned in Theorem 2. In particular we have

�i(k) = �̂i(k) + pi for all vi(k) 2 V� where �i(k) and �̂i(k) denote the �ring

times of node i in G and Ĝ in a free schedule, respectively.

Proof: The proof is based on the fact, that according to the case vi; vj 2 VS

and vj 2 VA, the inequalities which determine the �ring times in G and Ĝ

are identical, i.e. � = 
 = 0. Therefore, we have �i(k)
� = �i(k) � pi = �̂i(k).

The following theorem states how an admissible schedule for Ĝ leads to an

admissible schedule for G.

Theorem 3 Given is a MASS G containing no arcs from asynchronous to

synchronous nodes. Then any admissible schedule for Ĝ as de�ned in Theorem

2 leads to an admissible schedule for G with

�i(k) =

�
d�̂i(k)e + pi : vi 2 VS
�̂i(k) + pi + 1 : vi 2 VA



with the same computation rate. If G contains synchronous nodes only, there

is an L-periodic maximal{rate schedule for G where L denotes the number of

tokens in a simple cycle which determines the maximal cycle mean of Ĝ.

Due to space limitations, we omit the proof of Theorem 3. Instead, we

explain its essence by introducing a simple, illustrative example.

Example 4 Given the MASS G in Fig. 4 with two synchronous nodes v1
and v2, clock phases p1 = 0:1 and p2 = 0:6 and holding times h12 = 1:9 and

h21 = 1:7, respectively. If we determine the transformed arc weights, we get

h�
12

= 1:4 and h�
21

= 2:2. Then we have ĥ12 = 2 and ĥ21 = 3, which can be

seen in the associated marked graph Ĝ shown on the right hand side of Fig.

4. We obtain Pmin(Ĝ) = 2:5. Considering the unfolding with corresponding

�ring times, we can see that there is a 2-periodic schedule for G according to

Theorem 3. For example, we obtain the following schedule:

�1(2k) = 0:1 + 5k ; �1(2k + 1) = 3:1 + 5k ;

�2(2k) = 0:6 + 5k ; �2(2k + 1) = 2:6 + 5k 8k 2 Z>0

1.9

1.7

v1 v2

p1 p2= 0.1 = 0.6

2

3

v1 v2

k = 0 k = 1 k = 2 k = 3 k = 4

0.1

0.6

3.1 5.1

2.6

8.1

5.6

10.1

7.6 10.6

v
2

v1

G G
^

unfolding of G

Figure 4: MASS G, associated marked graph Ĝ and unfolding of G



PERSPECTIVES

In a future publication, we will show how the presented analysis can be

used for optimization of mixed asynchronous{synchronous systems, e.g., by

adjusting the phases of the synchronous modules for purpose of optimizing

the throughput rate, etc. We would also like to extend the MASS model to

consider multiple clock rates and deal with issues of synthesis.
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