
?1

Ptolemy II - Heterogeneous
Modeling and Design in Java

The Ptolemy project studies
modeling, simulation, and design
of concurrent, real-time,
embedded systems. The focus
is on assembly of concurrent
components. The key
underlying principle in the
project is the use of well-
defined models of computation
that govern the interaction
between components.

Principal Investigator
Edward A. Lee

Technical Staff
Christopher Hylands
Mary P. Stewart

Postdocs
Bart Kienhuis

Grad Students
John Davis, II
Chamberlain Fong
Bilung Lee
Jie Liu
Xiaojun Liu

SteveNeuendorffer
Jeff Tsay
Yuhong Xiong

? Telephones
? Pagers
? Cars
? Audio equipment
? Aircraft
? Trains
? Appliances
? Toys
? Security systems
? Games
? PDAs
? Medical diagnostics
? Weapons
? Pacemakers
? Television
? Network switches
? ...

only 2% of
computers
today are first
and foremost
“computers”

The fate of
computers
lacking
interaction with
physical
processes.

Embedded Systems

?2

What we are trying to avoid:

Embedded
software may
end up like this
as it scales up.

Poor common
infrastructure.
Weak
specialization.
Poor resource
management
and sharing.
Poor planning.

Elegant Federation

Elegant federation of
heterogeneous models.

Two Rodeo Drive, Kaplan, McLaughlin, Diaz

S
ou

rc
e:

 K
ap

la
n

M
cL

au
gh

lin
 D

ia
z,

 R
. R

ap
pa

po
rt

, R
oc

kp
or

t,
 1

99
8

?3

Component-Based Design

location transparency
hierarchy
modularity
reusability

Abstract Syntax

entity ports relation
? Ports and relations in black
? Entities in blue

?4

process {
…
read();
…

}

One Class of Semantic Models:
Producer / Consumer

process {
…
write();
…

}

channel

port port

receiver

?Are actors active? passive? reactive?
?Are communications timed? synchronized? buffered?

Domains – Provide semantic
models for component interactions

? CSP – concurrent threads with rendezvous
? CT – continuous-time modeling
? DE – discrete-event systems
? DT – discrete time (cycle driven)
? PN – process networks
? SDF – synchronous dataflow
? SR – synchronous/reactive

Each of these defines a component ontology and an
interaction semantics between components. There are
many more possibilities!

?5

Discrete-Event Modeling

The discrete-event
(DE) domain in
Ptolemy II models
components
interacting by
discrete events
placed in time. A
calendar queue
scheduler is used for
efficient event
management, and
simultaneous events
are handled
systematically and
deterministically.

Continuous-Time Modeling

The continuous time
(CT) domain in
Ptolemy II models
components
interacting by
continuous-time
signals. A variable-
step size, Runge-
Kutta ODE solver is
used, augmented with
discrete-event
management (via
modeling of Dirac
delta functions).

?6

What is a Domain

The definition of the interaction of components, and the software
that supports this interaction.

Multi-domain modeling means:
? Hierarchical composition

– heterogeneous models allowed

? Domains can be specialized
– avoid creeping featurism
– enable verification

? Data replication in OCP/Boldstroke is another domain
– separation of communication mechanisms.

?7

Ptolemy II – Our Software
Laboratory

Ptolemy II –
– Java based, network integrated
– Many domains implemented
– Multi-domain modeling
– XML syntax for persistent data
– Block-diagram GUI

– Extensible type system
– Code generator on the way

http://ptolemy.eecs.berkeley.edu

Embedded Software in Java
?!?!?!?!?

? Choosing the right design method has far more impact than faster software
? Multi-domain design permits using the best available modeling techniques
? Threads, objects, and UI infrastructure helps with both.
? Network integration of Java promotes sharing of modeling methods .
? Transportable code allows for service discovery and ad-hoc federation
? Java performance and infrastructure is rapidly improving.

?8

Ptolemy II
Packages

•kernel (clusterd graphs)
•actor (executable models)
•data (tokens, expressions)
•schematic (API for UIs)
•graph (graph algorithms)
•math (math algorithms)
•plot (plotting utilities)

Actor
ActorListener
AtomicActor
CompositeActor
DefaultExecutionListener
Director
Executable
ExecutionEvent
ExecutionListener
IOPort
IORelation
Mailbox
Manager
NoRoomException
NoTokenException
QueueReceiver
Receiver
TypeConflictException
TypeTerm
TypedActor
TypedAtomicActor
TypedCompositeActor
TypedIOPort
TypedIORelation

data

BooleanMatrixToken
BooleanToken
ComplexMatrixToken
ComplexToken
DoubleMatrixToken
DoubleToken
IntMatrixToken
IntToken
LongMatrixToken
LongToken
MatrixToken
Numerical
ObjectToken
ScalarToken
StringToken
Token
TypeLattice

kernel
math

graph

data.expr

ComponentEntity
ComponentPort
ComponentRelation
CompositeEntity
Entity
Port
Relation

kernel.util

Attribute
CrossRefList
IllegalActionException
InternalErrorException
InvalidStateException
KernelException
NameDuplicationException
Nameable
NamedList
NamedObj
NoSuchItemException
PtolemyThread
Workspace

kernel.event

TopologyChangeFailedException
TopologyChangeRequest
TopologyEvent
TopologyListener
TopologyMulticaster

ArrayMath
Complex
ExtendedMath
Fraction
SignalProcessing

CPO
DirectedAcyclicGraph
DirectedGraph
Graph
Inequality
InequalitySolver
InequalityTerm

ASCII_CharStream
ASTPtBitwiseNode
ASTPtFunctionNode
ASTPtFunctionalIfNode
ASTPtLeafNode
ASTPtLogicalNode
ASTPtMethodCallNode
ASTPtProductNode
ASTPtRelationalNode
ASTPtRootNode
ASTPtSumNode
ASTPtUnaryNode
JJTPtParserState
Node
Parameter
ParameterEvent
ParameterListener
ParseException
PtParser
PtParserConstants
PtParserTokenManager
PtParserTreeConstants
SimpleNode
Token
TokenMgrError
UtilityFunctions

plot

LogicAnalyzer
LogicAnalyzerFrame
Message
Plot
PlotApplet
PlotApplication
PlotBox
PlotDataException
PlotFrame
PlotLive
PlotLiveApplet
PlotPoint
Pxgraph

media

Audio
AudioViewer

schematic

Domain
EntityType
Icon
IconLibrary
PTMLParser
PTMLPrinter
PtolemySystem
Schematic
SchematicElement
SchematicEntity
SchematicParameter
SchematicPort
SchematicRelation
XMLElement

actor

actor.util

actor.lib

Add
Const
Demux
Expression
FunctionGenerator
Gain
Multiply
Mux
Plot
Print
Repeat
Select
Switch
XYPlot

CQComparator
CalendarQueue
DoubleCQComparator
FIFOQueue

NotifyThread
ProcessDirector
ProcessReceiver
ProcessThread
TerminateProcessException

actor.process

NotSchedulableException
Scheduler
StaticSchedulingDirector

actor.sched

kernel

ComponentEntity
ComponentPort
ComponentRelation
CompositeEntity
Entity
Port
Relation

ComponentEntity CompositeEntity

AtomicActor Director

«Interface»
Executable

CompositeActor
0..n

0..1

0..1

0..n container

«Interface»
Actor

0..2

1

Manager

0..1
1

NamedObj

«Interface»
Nameable

Workspace

0..n 1

Attribute

0..n
0..1

Entity

Port

0..n0..1

container

Relation
0..n

0..n
link

link

ComponentPort

ComponentRelation

0..n
0..1container

Kernel.util Package

Kernel Package

Actor Package

Ptolemy II Key
Classes

UML static structure
diagram for the key
classes in the kernel,
kernel.util, and actor
packages.

ComponentEntity CompositeEntity

0..1

0..n container

?9

Kernel Package

PortPort

Entity Entity
Link

Relation

Entity

Port

connection

connection

co
nn

ec
tio

n

Link
Li

nk

The Ptolemy II kernel
provides an abstract
syntax - clustered
graphs - that is well
suited to a wide
variety of domains,
ranging from state
machines to process
networks. Here is a
simple graph with
three interrelated
entities.

Basic Kernel Classes

NamedObj

Entity

+Entity()
+Entity(name : String)
+Entity(w : Workspace, name : String)
+connectedPorts() : Enumeration
+connectionsChanged(p : Port)
+getPort(name : String) : Port
+getPorts() : Enumeration
+linkedRelations() : Enumeration
+newPort(name : String) : Port
+removeAllPorts()
#_addPort(p : Port)
#_removePort(p : Port)

-_portList : NamedList

Port

+Port()
+Port(w : Workspace)
+Port(container : Entity, name : String)
+connectedPorts() : Enumeration
+isLinked(r : Relation) : boolean
+isOpaque() : boolean
+linkedRelations() : Enumeration
+link(r : Relation)
+numLinks() : int
+setContainer(c : Entity)
+unlink(r : Relation)
+unlinkAll()
#_link(r : Relation)

-_container : Entity
-_relationsList : CrossRefList

0..n0..1

containee

container

Relation

+Relation()
+Relation(name : String)
+Relation(w : Workspace, name : String)
+linkedPorts() : Enumeration
+linkedPorts(except : Port) : Enumeration
+numLinks() : int
+unlinkAll()
#_checkPort(p : Port)
#_getPortList() : CrossRefList

-_portList : CrossRefList0..n

0..n

link

link

CrossRefList

1..1

1..1

1..1

1..1

?10

Clustering

toplevel CompositeEntity

transparent CompositeEntity

AtomicEntity

Relation
dangling

transparent
Port

transparent
Port

opaque Port

The ports deeply connected to the
red port are the blue ones.

Composite
entities and
ports in Ptolemy
II provide a
simple and
powerful,
domain-
independent
abstraction
mechanism

Actor Package

Services
•broadcast
•multicast
•busses
•cacheing topology info
•clustering
•parameterization
•typing
•polymorphism Actor

 IOPort
 IORelation

P2
P1

E1

E2

send(0,t) receiver.put(t) get(0)

token t
R1

Basic Transport:

 Receiver
(inside port)

?11

Manager and Directors

P6 P3P2 P5P1
E1

E2

E4

E0

M: Manager

D1: local director

D2: local director

P4 P7

E3

E5

Opaque
Composite

Actor

Transparent
Composite

Actor

Hierarchical Heterogeneity:

Directors are
domain-specific. A
composite actor
with a director
becomes opaque.
The Manager is
domain-
independent.

Example: Sticky Masses

The stickiness is exponentially decaying with respect to time. The stickiness is exponentially decaying with respect to time.

?12

Sticky Masses: Block Diagram

out = k1*(y1 - in)/m1

out = k2*(y2 - in)/m2

=?

P
1

P
2

V1

V2

C

out = (k 1*y1+ k2*y2 - in)/(m 1+m2)

P
1

V

P2

out = k1*(y1-in) - k2*(y2 - in)
Fs

St

C

P:=P1
V:=(V 1*m1+V2*m2)/(m1+m2)

s:=5

|Fs|>St

P
1
:=P

P2:=P
V1:=V
V2:=V

P1

P
2

Plot

-s

Sticky Masses: Simulation

?13

sensors

leader

Br Acc

Ba

bang-bang PID

follower

controller actuators

S

Hierarchical View

Mutations

The kernel.event package provides support for
? Queueing requests for topology changes
? Processing requests for topology changes
? Registering listeners
? Notifying listeners of changes

Thus, models with dynamically changing
topologies are cleanly supported, and
the director in each domain can control
when mutations are implemented.

?14

Creating a Model

? Pick one or more domains
? Choose applet or application
? Choose Vergil, MoML, or Java code
? Design control interface
? Soon: Choose distribution architecture

Ptolemy II uses features in JDK 1.2, and hence
requires use of the Java plug-in with current
released browsers.

Vergil – An Extensible Visual Editor

Live editor
with XML
persistent file
format.

?15

HTML

<OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
width="700"
height="300"
codebase="http://java.sun.com/products/plugin/1.2/jinstall-12-win32.cab#Version=1,2,0,0">

<PARAM NAME="code" VALUE="doc.tutorial.TutorialApplet.class">
<PARAM NAME="codebase" VALUE="../..">
<PARAM NAME="type" VALUE="application/x-java-applet;version=1.2">
<COMMENT>
<EMBED type="application/x-java-applet;version=1.2"

width="700"
height="300"
code="doc/tutorial/TutorialApplet.class"
codebase="../.."
pluginspage="http://java.sun.com/products/plugin/1.2/plugin-install.html">

</COMMENT>
<NOEMBED>
No JDK 1.2 support for applet!
</NOEMBED>
</EMBED>
</OBJECT>

Internet explorer and
Netscape have different
plug-in architectures :-(

Simple Applet – Directly in Java

package doc.tutorial;
import ptolemy.domains.de.gui.DEApplet;
import ptolemy.actor.lib.Clock;
import ptolemy.actor.gui.TimedPlotter;

public class TutorialApplet extends DEApplet {
public void init() {

super.init();
try {

Clock clock = new Clock(_toplevel,"clock");
TimedPlotter plotter =

new TimedPlotter(_toplevel,"plotter");
_toplevel.connect(clock.output, plotter.input);

} catch (Exception ex) {}
}

}

?16

Compiling and Running

cd $PTII/doc/tutorial
cp TutorialApplet1.java TutorialApplet.java
javac -classpath .. TutorialApplet.java

appletviewer tutorial.htm

XML Model Specification (MoML)

<?xml version="1.0" standalone="no"?>
<!DOCTYPE model SYSTEM "DTD location">
<model class="classname">

<entity name="A" class="classname"></entity>
<entity name="B" class="classname"></entity>
<entity name="C" class="classname"></entity>
<relation name="r1"></relation>
<relation name="r2"></relation>
<link port="A.out" relation="r1"/>
<link port="B.in" relation="r1"/>
<link port="C.out" relation="r2"/>
<link port="B.in" relation="r2"/>

</model>

out

A
r1

r2

out

B

in

C

?17

Infrastructure Support

? Expression language
? Type system
? Math package
? Graph package
? Plot package
? GUI package
? Actor library

Type System Infrastructure

Ptolemy II has an
extensible type system
infrastructure with a
plug-in interface for
specifying a type
lattice. At the left, an
applet illustrates type
resolution over a
(simplified) type
lattice representing
data types exchanged
between actors.

?18

Example - Type Inference
Output of type
Token - pure event
with no value

Input of type Token
- anything will do

Polymorphic output
- type depends on
the parameters

DoubleToken

IntToken

Double

Polymorphic actor -
uses late binding in
Java to determine
implementation of
addition (add()
method in Token).Opaque port -

types propagated
from inside

Double

Lossless runtime
type conversion

Nascent Generator Infrastructure

Domain semantics defines communication, flow of control

Ptolemy II model

scheduler

Schedule:
- fire Gaussian0
- fire Ramp1
- fire Sine2
- fire AddSubtract5
- fire SequenceScope10

parser

method call

if

block

method call

block

code generator
…
for (int i = 0; i < plus.getWidth(); i++) {
if (plus.hasToken(i)) {
if (sum == null) {
sum = plus.get(i);

} else {
sum = sum.add(plus.get(i));

}
}

}
…

All actors will be
given in Java, then
translated to
embedded Java, C,
VHDL, etc.

target codeabstract syntax treeFirst version created
by Jeff Tsay.

?19

Generator Approach

? Actor libraries are built and maintained in Java
– more maintainable, easier to write
– polymorphic libraries are rich and small

? Java + Domain translates to target language
– concurrent and imperative semantics

? Efficiency gotten through code transformations
– specialization of polymorphic types
– code substitution using domain semantics
– removal of excess exception handling

Code transformations (on AST)

// Original actor source
Token t1 = in.get(0);
Token t2 = in.get(1);
out.send(0, t1.multiply(t2));

specialization of Token declarations

// With specialized types
IntMatrixToken t1 = in.get(0);
IntMatrixToken t2 = in.get(1);
out.send(0, t1.multiply(t2));

The Ptolemy II type system
supports polymorphic actors with
propagating type constraints and
static type resolution. The
resolved types can be used in
optimized generated code.

See Jeff Tsay, A Code Generation Framework for Ptolemy II

?20

Code transformations (on AST)

transformation using domain semantics

// With specialized types
IntMatrixToken t1 = in.get(0);
IntMatrixToken t2 = in.get(1);
out.send(0, t1.multiply(t2));

Domain-polymorphic code is
replaced with specialized code.
Extended Java (from Titanium
project) treats arrays as
primitive types.

// Extended Java with specialized communication
int[][] t1 = _inbuf[0][_inOffset = (_inOffset+1)%5];
int[][] t2 = _inbuf[1][_inOffset = (_inOffset+1)%5];
_outbuf[_outOffset = (_outOffset+1)%8] = t1 + t2;

See Jeff Tsay, A Code Generation Framework for Ptolemy II

Code transformations (on AST)

convert extended Java to ordinary Java

// Extended Java with specialized communication
int[][] t1 = _inbuf[0][_inOffset = (_inOffset+1)%5];
int[][] t2 = _inbuf[1][_inOffset = (_inOffset+1)%5];
_outbuf[_outOffset = (_outOffset+1)%8] = t1 + t2;

// Specialized, ordinary Java
int[][] t1 = _inbuf[0][_inOffset = (_inOffset+1)%5];
int[][] t2 = _inbuf[1][_inOffset = (_inOffset+1)%5];
_outbuf[_outOffset = (_outOffset+1)%8] =

IntegerMatrixMath.multiply(t1, t2);

See Jeff Tsay, A Code Generation Framework for Ptolemy II

?21

Software Practice

? Object models in UML
? Design patterns
? Layered software architecture
? Design and code reviews
? Design document
? Nightly build
? Regression tests
? Sandbox experimentation
? Code rating

UML (Unified Modeling Language)

We make
extensive use of
static structure
diagrams, and
much less use of
other UML
languages.

?22

Design patterns

? A high-level vocabulary for
describing recurring patterns:

– Strategy
– Composite
– Factory
– Template method

? A way of factoring experience
into concrete terminology

? We studied the most
important patterns from
Gamma et al

Strategy
process()

CStrategy2
process()

CStrategy1
process()

Client
process()

process

Design and Code Reviews

? Objective is “publishable software”
? Defined roles for participants

– Author has the last word

? Mechanism for new group members to
learn to differentiate good from bad
software. All technical reviews are based on the

idea that developers are blind to some
of the trouble spots in their work...

Steve McConnell

?23

Code rating

? A simple framework for
– quality improvement by peer

review
– change control by improved

visibility

? Four confidence levels
– Red. No confidence at all.
– Yellow. Passed design review.

Soundness of the APIs.
– Green. Passed code review.

Quality of implementation.
– Blue. Passed final review.

Backwards-compatibility
assurance.

? What is this about really?
– Confidence in quality
– Commitment to stability

How we do a review

? Top level
– The author announces that the package is ready for review
– The moderator organizes and moderates the review
– The author responds to the issues raised in the review, redesigning or

reworking as necessary
– The author announces the new rating.

? In the review
– The moderator runs the meeting and keeps the discussion on track; and

acts as reader (in our process).
– The reviewers raise issues and defects
– The author answers questions
– The scribe notes raised issues and defects
– Nobody attempts to find solutions!

Roles define and
clarify responsibility

?24

What were the review benefits?

? Students
– better design and more confidence.
– good feedback about documentation and naming issues
– revealed quite a few flaws
– an affirmation that your architecture is sound
– encourage other people in the group to reuse code
– forcing function to get documentation in order
– my coding style changed

? Staff
– exposed quite a few design flaws
– caught lots of minor errors, and quite a few insidious errors

Design in an Abstract Universe

When choosing syntax and
semantics, we can invent
the “laws of physics” that
govern the interaction of
components.

As with any such laws, their
utility depends on our
ability to understand
models governed by the
laws.

Magritte, Gelconde

