The Ptolemy II Framework for Visual Languages

Xiaojun Liu
Yuhong Xiong
Edward A. Lee

Department of Electrical Engineering and Computer Sciences
University of California at Berkeley

Ptolemy II - Heterogeneous Modeling and Design in Java

The Ptolemy project studies modeling, simulation, and design of concurrent, real-time, embedded systems. The focus is on assembly of concurrent components. The key underlying principle in the project is the use of well-defined models of computation that govern the interaction between components.

Principal Investigator
Edward A. Lee

Technical Staff
Christopher Hylands
Mary P. Stewart

Postdocs and Researchers
Johan Eker
Joern Janneck
Winthrop Williams

Grad Students
Christopher Chang
Elaine Cheong
Chamberlain Fong
Jie Liu
Xiaojun Liu
Steve Neuendorffer

Yang Zhao
Approach to Visual Modeling

- Abstract syntax: clustered graph of entities and relations.
- Executable entities and execution control: actors communicate with each other through message passing under the control of a director.
- Domains: implementation of semantics for component interaction.
- *charts: mixing finite state machine (FSM) with other domains.
- System-level types: formal framework to study the dynamic properties of component interaction.

Abstract Syntax

Clustered graphs well-suited to a wide range of domains, ranging from state machines to process networks.
The ports deeply connected to the red port are the blue ones.

Executable Entities and Execution Control

Actors communicate with each other through message passing. Directors control the execution of actors.
Domain Examples

- Continuous Time (CT): actors interact via continuous-time signals.
- Discrete Event (DE): actors communicate via events placed on a real time line.
- Synchronous Dataflow (SDF): actors perform regular computations on data streams.
- Synchronous Reactive (SR): actors interact through signals whose values are aligned with global clock ticks.

Ptolemy II Infrastructure
*charts (Girault, Lee and Lee)

- Motivated by Statecharts and hybrid systems.
- Allows nesting FSMs with a variety of models of computation.
- Nesting can happen at any level in a heterogeneous model.
- Decouples the concurrency model from the hierarchical FSM semantics.

*charts – Ptolemy II Implementation

- FSMActor
- Modal Model

(a) The environment.
(b) The modes.
(c) The modal model.
Example: Sticky Masses

The stickiness is exponentially decaying with respect to time.

Sticky Masses: Block Diagram
Formal Framework for Component Interaction

- Treat different communication protocols in Ptolemy II domains as types: interaction types or system-level types.
- Type signature and component behavior described by interface automata (de Alfaro and Henzinger).
- Compatibility of components with an interaction type checked through automata composition.
- Simulation relation captures subtyping of interaction types.
- Components may be polymorphic: compatible with multiple interaction types.
Conclusion

- Visual models in Ptolemy II are built on 3 layers: abstract syntax, executable entities, domains.
- Implemented *charts formalism: nesting FSMs with a variety of models of computation.
- Developed a formal framework to study component interaction.

For more information:

http://ptolemy.eecs.berkeley.edu

Release 1.0.1 available for download