Ptolemy HSIM application example
Summary

• Today's complex systems increasingly require heterogeneity and hierarchy in the design process.

• A comprehensive design environment should leverage mature design capabilities and resources of both commercial and research tools.

• BDT’s extensible Ptolemy HSIM supports heterogeneous co-simulation between arbitrary design combinations from multiple tools.

• Here’s what HSIM looks like: LAN-based teleconferencing example.

• contact BDT by email: hsim@bdti.com or by phone: (510) 791-9100
 Please stop by our booth for a demo of Ptolemy HSIM.
Technical Issues

• Semantic mappings raise subtle and sometimes complex issues.
 • e.g. should a nested DE design run reactively or synchronously?
 • or, if no new data is available, but the parent requires some, what should the heterogeneous boundary do?

• Since multiple mappings may be valid, give the designer the ability to choose which is appropriate in a given design.
 • make the choice an explicit design decision
Capabilities Needed for Heterogeneous Design

- Support arbitrary combinations of designs from multiple tools - using hierarchy and heterogeneity.

- Provide for flexible semantic mapping at heterogeneous boundaries.

- Must be efficient and offer a cost-effective solution for integration of high-level design tools.

- Should be easy to use.
What is Ptolemy HSIM?

- A co-simulation mechanism that offers efficient heterogeneous interoperability to high-level design tools.
- Ptolemy HSIM includes additions and extensions to the kernel constructs.

```
<table>
<thead>
<tr>
<th>SPW</th>
<th>BONeS</th>
<th>Other</th>
<th>Sim Matrix</th>
<th>Various HW simulators</th>
</tr>
</thead>
</table>

Existing Ptolemy Kernel

SDF
DDF
DE
CP

Existing and future Ptolemy domains
```
Value of Generalized Heterogeneous Design

• Benefit from using the right tool for the job.
 • natural form of expression
 • efficient simulation
 • possibility of efficient synthesis

• Gain ability to mix widely varying levels of abstraction throughout the entire design process.
 • improved prototyping at system level
 • flexible vehicle for validation at all levels

• Leverage from specialization of successful commercial tools.
 • libraries, computational models, analysis and visualization tools

• Encourage reuse of existing tools and designs.
 • a cost effective approach
Focus on Heterogeneity

BDT is focusing on Ptolemy's support for heterogeneous design.

• Today's systems are increasingly complex and are best described using multiple computational models.
 • designers gain leverage when working with a mixture of specialized tools applied at higher levels of abstraction.

• A primary technical contribution from the Ptolemy research is support for heterogeneity.
 • commercial high-level design tools offer little interoperability
Under **RASSP**, BDT is leveraging UCB Ptolemy concepts and software to bring heterogeneous capabilities to existing high-level, commercial system design tools.

- **BDT** has developed a heterogeneous co-simulation mechanism for use with existing commercial or research high-level design tools (including Ptolemy!).

- We call our Ptolemy-based, tool-independent mechanism **Ptolemy HSIM**.

- For RASSP, we are using it to integrate tools within the Enterprise framework for co-simulation.