
!"#$%&'()*%(+,-".&/0)*$1)2&

34-1(56-".7&8".*%"9&6.:&

8"11,.(;6-".&!

<6")$.&=>6.?&

&

@8&<$%A$9$0&

B,?&C.:&7&CDEC&

&

&

&

F"(.*&#"%A&#(*>&'6G(:&H)$I@8<J&7&&B9+$%*&K61&ILM<@J7&&F6G6:&K6G6$(&I8"9,1+(6J7&&

B9$N6.:%"&&'"1(.?,$5OP6%;(6&I@Q@8JR&

&

&

!



Optimization problems in power networks 

•  Optimization used for resource allocation 

•  Increasing complexity: 
–  Optimal Power Flow (OPF) 
–  Unit Commitment 
–  Security Constraint Unit Commitment  

•  All are done at the level of transmission networks 

•  Smart grid: Optimization in distribution networks 
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Power flow in the smart grid 

Distributed  
Generation 

Renewables 

Demand 
Response 

Demand 
Response 

EVs 
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Power Flow 

•  Focus on the basic problem: Optimal Power Flow (OPF) 

•  Review of AC power flow 

•  Network with n buses 

 
•  Power Flow 
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Optimal power flow 

•  OPF: optimize over complex voltages 

 
•  Non-convex 
•  DC power flow often used for transmission network 

–  Lossless network, ignore reactive power 

•  Not satisfactory for distribution network 
–  Higher losses 
–  Reactive power coupled with active power flow 
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Transmission vs. distribution   

•  Transmission Network 

 
•  OPF is non-convex, 

hard 

•  Distribution Network 

 
•  OPF still non-convex 
•  We show:  

–  convex relaxation tight 
–  decentralized solution 

tree topology 

cycles 
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OPF on trees:  take 1 

Theorem  1 (Z & Tse., 2011): 
 

 Convex rank relaxation for OPF is tight if: 
  1) the network is a tree  
  2) no two connected buses have tight bus power      
lower bounds. 

 
 
 
(See also: Sojoudi & Lavaei 11, Steven Low’s group) 

Geometry of feasible injection region of power networks, IEEE Transaction on Power Systems 



Proof approach   

•  Focus on the underlying injection region and 
investigate  its convexity. 

•  Used a matrix-fitting lemma from algebraic graph 
theory. 

Drawbacks: 

•  Role of tree topology unclear. 

•  Restriction on bus power lower bounds 
unsatisfactory. 



OPF on trees: take 2 

 Theorem 2 (Lavaei,  Tse. & Z 13):  
 

 Convex relaxation for OPF is tight if  
  1) the network is a tree  
  2) angle differences along lines are “reasonable” 

 
 
More importantly: 
 

 Proof is entirely geometric and from first principles. 

Geometry of power flows in tree networks, PES General Meeting, 2012 



Outline of talk 

•  Results on optimal power flow on trees. 

•  A geometric understanding. 

•  Application to the voltage regulation problem in 
distribution networks with renewables. 

•  An optimal decentralized algorithm for solving this 
problem. 

•  What happens when there is no communication? 
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Example: Two Bus Network 

 #0:%#&0 #93(#B%#&& #0:%1&0 #93(#B%1&& 

C#:%#&C!C#:%1&C!#72+2( 

#3&4 ⁠D. #E%#&5 #E%1&/&F
D(>GHIJ?K>G@ #E%#& 

#E%1& 

Pareto-Front 

Pareto-Front = Pareto-Front of its Convex Hull 

#E%#& #E%1& '"() 
convex relaxation 

=> convex relaxation is tight. 

injection  
region 

Optimal? 

Better 
Optimal? 
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all feasible (P1,P2) 



Add constraints 

•  Two bus network 

•  Active power upper 
bounds 

 
•  Reactive power upper 

bounds 

•  Power lower bounds 

#E%#& 

#E%1& 

#:%#& #:%1& #E%#& #E%1& 
#E%#& #E%1& 

#E%#&6L#E%#&&,#E%1&6L#E%1&& 
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Add constraints 

•  Two bus network 

•  Active power upper bounds 
 

•  Reactive power upper 
bounds 

•  Power lower bounds 

#E%#& 

#E%1& 

#:%#& #:%1& #E%#& #E%1& 
#E%#& #E%1& 

#M%#&6L#M%#&&,#M%1&6L#M%1&& 

#LM&%#& 
#LM&%1& 
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Add constraints 

•  Two bus network 

•  Loss 

•  Power upper bounds 

•  Power lower bounds 

#:%#& #:%1& #E%#& #E%1& 

#E%#& 

#E%1& 

This situation is avoided by adding angle constraints 

#E%#& #E%1& 
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Angle Constraints 

•  Angle difference is often constrained in practice 
–  Thermal limits, stability, ! 

•  Only a partial ellipse where 
 all points are Pareto  
 optimal. 

•  Power lower bounds 

#E%#& 

#E%1& CBC6 ##7843"#& ⁠. #)N'&/& 

e.g. b/g=3, 71o 
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Angle constraints 

•  Angle difference is often constrained in practice 
–  Thermal limits, stability, ! 

•  Only a partial ellipse where 
 all points are Pareto  
 optimal 

•  Power lower bounds 
 

#E%#& 

#E%1& 

No Solution Problem is 
Infeasible 

Or  
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Injection Region of Tree 
Networks 

•  Injections are sums of line flows 
•  Injection region =  
              monotone linear transformation of the flow region 
•  Pareto front of injection region is preserved under 

convexification if same property holds for flow region. 
•  Does it? 

1 

#E%#1& 

#E%1#& 

#E%#9& 

#E%9:& 

# 

9 

#E%#&! #E%#1&- #E%#9& 
#E%1&! #E%1#& 
#E%9&! #E%9:& 

#E%#& 
#E%1& 
#E%9& 

!"

!" ! "
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•  One partial ellipse per line  
•  Trees: line flows are decoupled 

Flow Region 

1 

#E%#1& 

#E%1#& #E%9:& 

# 

9 

Flow region=Product of n-1 ellipses   

#E%#9& 

Pareto-Front of  
Flow Region 

Pareto-Front of  
its Convex Hull 

! 
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Application: Voltage regulation 

Feeder 
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Voltage Profile

Use power electronics to regulate voltage via reactive power. 

Current capacitor banks  
•  Limited switching 
•  Small operating range 

(Lam, Z, Dominguez-Garcia & Tse., 12) 
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•  The reactive powers can be used to regulate voltages 

Power Electronics 

Solar Inverter 

E 

M 
P-Q Region 

http://en.wikipedia.org/wiki/File:Solar_inverter_1.jpg 19/34 



Random Solar Injections 

•  Solar Injections are random 

Random Bus Active 
Power Constraints 

Net Load=Load - Solar 

Random 

8 am 6 pm 

*;O6.P"Q68.05(O6.P< 



Voltage Regulation Problem 

•  Can formulate as an loss minimization problem 

System Loss 

Voltage Regulation 

Active Power 

Reactive Power 
Control  

How to do relaxation algebraically?  



Algebraic Representation 

•  Everything is linear in VVH 

 
  
 

•  Replace VVH by W 

•  SDP 
22/34 

R=> 
rankSRT!# 

Convex rank relaxation 



Decentralized Algorithm 

 
•  Convex relaxation gives an SDP, does not scale 

•  No infrastructure to transfer all data to a central node 

•  We exploit the tree structure to derive a decentralized, 
asynchronous algorithm  

•  Communication along physical topology. 
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Example 

•  Each node solves its sub-problem 
with 
–  Its bus power constraints 
–  Lagrangian multipliers for its 

neighbors (line flow constraints) 
9 : 

1 

# 

1 

# 
U 

9 : 

1 

# 
U 

U U 9 

1 

: 

1 
U U 

•  Update Lagrangian multipliers 
•  Robust to asynchrony 
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Simulations 

•  34 Bus Network 

•  2.4 KV 
•  Bus~ 10 households 
•  Nominal Loads 
•  Fixed capacitor banks 

8am 6pm 

8am 6pm 
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Cyber-physical System 

•  An optimal distributed algorithm for voltage regulation 

•  PG&E: Communication links fails about 50% of the time 
(dies completely) 

•  What happens if communication is not complete? 

•  Can we maintain voltage stability? 
26/34 

Feeder 



Local Control Scheme 

•  No real-time communications at all (today’s system) 

•  Solar and EV penetrations are increasing 

•  How do maintain voltage stability? 

•  Each bus senses its voltage, adjusts its reactive 
power (Active power not changed) 

•  Are local actions enough? 

27/34 
A Local Control Approach to Voltage Regulation in Distribution Networks, NAPS 2013, on ArXiv 



Iterative Algorithm 

At time t, 
•  If 0 #?%!&V/W0@#, Increase Q_i 
•  If C#?%!&V/WCA#5 Decrease Q_i 
 
Update algorithm 

 #M%!&V/-#W! #M%!&V/W- #P%!&S#"C#:%!&V/WCT 
 
Question: Does this algorithm ever terminate? 
 
We show sufficient and necessary conditions 

28/34 

Gain 



Dynamical System 

 
 
 
 
 
 
 
 
•  Linearize the system 

•  Matrix A depends on active powers 
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Distribution System 
 

Voltage 

" Reference 
Diagonal  
Controller 

Reactive power 

v!X< 



Linear System 

•  Given active powers,  

•  Does there exist a diagonal controller to stabilize the 
system? 

•  Does there exist D, diagonal,  such at 

•  Given p, easy to check 
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No Communication 

•  Active powers lies in a region 

•  One diagonal controller needs to work for all active 
powers 

•  Theorem: It is sufficient to design a controller with 
respect to . ##E%#&&5( ##E%1&&5D5 ##E%4&&/ 

•  Proof not trivial, careful analysis of the system matrix 

31/34 
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Stability Regions 

•  Stability region: set of all active powers that can be 
stabilized by some diagonal controller 

 
•  Line networks are hardest to control 

•  Size of stability region depends on the depth of the 
network 

•  As length go to E, stability region goes to a point 
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Simulation 

•  IEEE 34-bus test feeder 

33/34 

Normal Load 5x the Load 



Summary 

•  Geometrical view of power flow  

•  Optimization problems on tree networks can be 
convexified   

•  Applied to design an optimal distributed algorithm for 
voltage regulation. 

•  Communication important for long networks 
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