Power Distribution Systems:
Optimization, Control and
Communication

Baosen Zhang

UC Berkeley
Aug 2", 2012

Joint work with David Tse(UCB), Albert Lam (HKBU), Javad Lavaei (Columbia),
Alejandro Dominguez-Garcia (UIUC).



Optimization problems in power networks

Optimization used for resource allocation

Increasing complexity:

— Optimal Power Flow (OPF)

— Unit Commitment

— Security Constraint Unit Commitment

All are done at the level of transmission networks

Smart grid: Optimization in distribution networks
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Power flow in the smart grid
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Power Flow

Focus on the basic problem: Optimal Power Flow (OPF)

Review of AC power flow
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Optimal power flow

* OPF: optimize over complex voltages

minimize E fi(FP;)
subject to Voltage Constraints
Bus Power Constraints

Network Constraints

* Non-convex

« DC power flow often used for transmission network
— Lossless network, ignore reactive power

* Not satisfactory for distribution network

— Higher losses
— Reactive power coupled with active power flow
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Transmission vs. distribution

 Transmission Network < Distribution Network
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hard We show:

— convex relaxation tight
— decentralized solution
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OPF on trees: take 1
Theorem 1 (Z & Tse., 2011):

Convex rank relaxation for OPF is tight if:
1) the network is a tree

2) no two connected buses have tight bus power
lower bounds.

(See also: Sojoudi & Lavaei 11, Steven Low’s group)

Geometry of feasible injection region of power networks, IEEE Transaction on Power Systems



Proof approach

* Focus on the underlying injection region and
iInvestigate its convexity.

« Used a matrix-fitting lemma from algebraic graph
theory.

Drawbacks:
* Role of tree topology unclear.

« Restriction on bus power lower bounds
unsatisfactory.



OPF on trees: take 2
Theorem 2 (Lavaei, Tse. & Z 13):

Convex relaxation for OPF is tight if
1) the network is a tree
2) angle differences along lines are “reasonable”

More importantly:

Proof is entirely geometric and from first principles.

Geometry of power flows in tree networks, PES General Meeting, 2012



Outline of talk

Results on optimal power flow on trees.

« A geometric understanding.

« Application to the voltage regulation problem in
distribution networks with renewables.

* An optimal decentralized algorithm for solving this
problem.

« What happens when there is no communication?
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Example: Two Bus Network

|V¢14e?j&’¢1 | {JZ |eTj6¥gection J2 convex relaxation
P g—Jb P2 reglon\A

[VI1 [=[VI2 [=1p.u.

Injection region:
all feasible (P,P,)

min /(A1 ,PI2)

/[ Increasing Pareto-Front Pl

Pareto-Front = Pareto-Front of its Convex Hull

=> convex relaxation is tight.
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Add constraints

 Two bus network AP42

Vl]% —> <_'F V42
Pl Pl2

Pl P2

Active power upper
bounds

Pl <PI1 PI2 <PI2

Reactive power upper
bounds

Pl

Power lower bounds
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Add constraints

 Two bus network AP42
Pl P2
Vl]% —> <_'F Vi2
Pl Pl2

* Active power upper bound

v

Reactive power upper
bounds

041 <01 ,042 <042

01

Pl

Power lower bounds

12/34



Add constraints

 Two bus network W2
Pl P2
Vl]% —> <_'f Vi2 /
Pl1 Pl2
e Loss

v

« Power upper bounds

v

* Power lower bounds

This situation is avoided by adding angle constraints
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Angle Constraints

* Angle difference is often constrained in practice
— Thermal limits, stability, ... PU2

« Only a partial ellipse where [6/<tanT=1(6/g)
all points are Pareto |
optimal / ~._ €.g9.b/g=3, 71°
* Power lower bounds
A
7,
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Angle constraints

* Angle difference is often constrained in practice

— Thermal limits, stability, ...

* Only a partial ellipse where
all points are Pareto
optimal

 Power lower bounds

Y/ Or Problem is

Infeasible

M2

Pl
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Injection Region of Tree

Networks
1
PJ}ZZ 413 Pl1 =PI12 +Pi13
1 P2 =pPi21
PI3 =pl34
Pl \Pl34
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A
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 Injections are sums of line flows
* Injection region =
monotone linear transformation of the flow region

« Pareto front of injection region is preserved under
convexification if same property holds for flow region.

e Does it?
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Flow Region

* One partial ellipse per line
* Trees: line flows are decoupled

Flow region=Product of n-7 ellipses

Pareto-Front of _ Pareto-Front of

Flow Region ~ its Convex Hull
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Application: Voltage regulation

(Lam, Z,
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Use power electronics to regulate voltage via reactive power.

Optimal distributed voltage regulation in power distribution networks, ArXiv
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Power Electronics

Solar Inverter P-Q Region
d

* The reactive powers can be used to regulate voltages

http://en.wikipedia.org/wiki/File:Solar_inverter_1.jpg 19/34



Random Solar Injections

« Solar Injections are random Random

Net Load=Load - Sofa/r
€|Load—Solar, Load]

Random Bus Active
Power Constraints

Irradiance (W/mz)
o
o
-
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Voltage Regulation Problem

« Can formulate as an loss minimization problem

minimize E P; <— System Loss

subject to |V;| =1 < Voltage Regulation

< 0% | B, < Pi < P . <— Active Power
?_,0.015* 1 / <
5 oot , Qz <~ Reactive Power
g Contro .
= Network Constraints
% 500 1000

Time horizon (min)

How to do relaxation algebraically?



Algebraic Representation

« Everything is linear in VVH

maximize Z P;

subject to [V =1, Vi
P, <P <P;
Q,<Qi<@
p + jq = diag(vv?YH)

« Replace VVH by W

Convex rank relaxation

- SDP
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Decentralized Algorithm

« Convex relaxation gives an SDP, does not scale
* No infrastructure to transfer all data to a central node

« We exploit the tree structure to derive a decentralized,
asynchronous algorithm

« Communication along physical topology.
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Example

1 « Each node solves its sub-problem
with

— Its bus power constraints

— Lagrangian multipliers for its
neighbors (line flow constraints)

« Update Lagrangian multipliers
* Robust to asynchrony
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Simulations
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Cyber-physical System

An optimal distributed algorithm for voltage regulation
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PG&E: Communication links fails about 50% of the time
(dies completely)

What happens if communication is not complete?

Can we maintain voltage stability?
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Local Control Scheme
* No real-time communications at all (today’s system)
« Solar and EV penetrations are increasing
« How do maintain voltage stability?

« Each bus senses its voltage, adjusts its reactive
power (Active power not changed)

« Are local actions enough?

A Local Control Approach to Voltage Regulation in Distribution Networks, NAPS 2013, on ArXiv
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Iterative Algorithm
At time t,

« If|VJi[t]|<1, Increase Q i

« If VIi[t][>1, Decrease Q_i

Update algorithm ﬁain
Qi [t+1]=Qi [t]+dii 1—[Vii[E]])

Question: Does this algorithm ever terminate?

We show sufficient and necessary conditions
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Dynamical System

Reactive power Voltage
Ve POWET ! Distribution System e,

Diagonal P
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Controller

* Linearize the system
V=Aq
« Matrix A depends on active powers
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Linear System

Given active powers,

V=Aq

* Does there exist a diagonal controller to stabilize the
system?

* Does there exist D, diagonal, such at

DA+ATT D >0

« Given p, easy to check
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No Communication

Active powers lies in a region

Pli <Pli<Pli

* One diagonal controller needs to work for all active
powers

« Theorem: It is sufficient to design a controller with
respect to (P41 , P42 ,...Pin)

* Proof not trivial, careful analysis of the system matrix
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Stability Regions

« Stability region: set of all active powers that can be
stabilized by some diagonal controller

 Line networks are hardest to control

« Size of stability region depends on the depth of the
network

* As length go to oo, stability region goes to a point
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Simulation
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Summary
« (Geometrical view of power flow

« Optimization problems on tree networks can be
convexified

« Applied to design an optimal distributed algorithm for
voltage regulation.

« Communication important for long networks
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