Precision Timed Infrastructure:

Languages, Compilers, and Hardware with
Ubiquitous Notion of Time

June 28, 2013

David Broman
broman@eecs.berkeley.edu

EECS Department
University of California, Berkeley, USA

and

Linkdping University, Sweden

PRET Infrastructure at Berkeley
David Broman Edward A. Lee
Jian Cai Aviral Shrivastava
Hokeun Kim Chris Shaver
Yooseong Kim Michael Zimmer

broman@eecs.berkeley.edu

Part | Part Il Part Il
Cyber-Physical Precision Timed Infrastructure Design
Systems Challenges

Z

a
Cyber-Physical Precision Timed Design
Systems Infrastructure Challenges

broman@eecs.berkeley.edu

Part |
Cyber-Physical Systems

Platform 1
Physical Plant 2

Network /"5, torm 2 nte

eeeee

Physical Plant 1

Part| paH " Part Il
ﬂ Cyber-Physical Precision Timed Design
Systems Infrastructure Challenges

Cyber-Physical Systems (CPS)

broman@eecs.berkeley.edu

Power Plants Aircraft

Industrial Robots

a
w Cyber-Physical Precision Timed Design
Systems Infrastructure Challenges

Modeling, Simulating, and Compiling

Cybe I'-P hyS i ca I SySte ms broman@eecs.berkeley.edu

i1 = M, — M <
Jods = My, — Mo >
w1 = —Trws Simulation with
M I My, = —r 'M, timing properties =
ode Various models of ¢

Equation-based model

ardware-in-the-loop
(HIL) simulation Mo

Physical system
available? &

LS

System

=

Physical system (the plant) Cyber system: Computati (emedded) + Networking

Part| paH " Part Il
ﬂ Cyber-Physical Precision Timed Design
Systems Infrastructure Challenges

Cyber-Physical Co-Design Problem

broman@eecs.berkeley.edu

Rapid development of CPS with high confidence of
correctness is a co-design problem

The design of The design of
Physical system Cyber system:

(the plant) Computation (embedded)
. | + Networking

influence
each other
|
O
r Cyber-Physical Precision Timed Design

Systems Infrastructure Challenges

Cyber/Physical Co-design

broman@eecs.berkeley.edu

Jlujl = AL; —]\[1
.]2 LJQ = A[h — M. 2
w1 = —Trw2
My = —r7'M,
Model

Equation-based mode
Model fidelity problem

“Ensuring that the model accurately
imitates the real system”

LS

Y/

At

' Challenge #1:
Compile/synthesize the model’s cyber part, such that the simulated

model and the behavior of the real system coincide.

The main challenge is to guarantee correct timing behavior.

a
w Cyber-Physical Precision Timed Design
Systems Infrastructure Challenges

broman@eecs.berkeley.edu

Part Il
Precision Timed Infrastructure

Wa
Cyber-Physical r Precision Timed Design
Systems Infrastructure Challenges

Programming Model and Time
broman@eecs.berkeley.edu

Timing is not part of the software semantics

Correct execution of programs (e.g., in C, C++, C#, Java, Scala,
Haskell, OCaml) has nothing to do with how long time things
takes to execute.

Traditional Approach

Programming

Model

Timing Dependent on the

Hardware Platform
Our Objective

Make time an abstraction within the Timing is independent of the hardware

programming model platform (within certain constraints)
a a al

Cyber-Physical ‘r Precision Timed Design

Systems Infrastructure Challenges

10

What is PRET?

broman@eecs.berkeley.edu

PRET = PREcision-Timed

Stephen Edwards and Edward A. Lee, “The Case for the Precision Timed
(PRET) Machine”, DAC, 2007

PRET Infrastructure

« PRET Language (Language with timing semantics) _

* PRET Compiler (Timing aware compilation)

* PRET Hardware (Computer Architecture)

a a a
Cyber-Physical % Precision Timed Design
Systems Infrastructure Challenges

11

Detecting missed deadlines

broman@eecs.berkeley.edu

Hard task Firm task Soft task
Missed Catastrophic Result is useless, but Result has still
deadline consequence causes no damage some utility

\

Predictable timing

= Guarantee Early miss Immediate miss Late miss
correctness detection detection detection
(WCET) — Repeatable timing
Processor Task = Same platform: Testability
frequency R = Changing platform: Portability

Time
(measured in e.g., ns)

Precision of timing Deadline
= Level of nano seconds

Cyber-Physical Precision Timed Design
Systems Infrastructure Challenges

T e

12

Worst-Case Execution Time (WCET)

broman@eecs.berkeley.edu

Worst-case
Measurement-based approach execution time
+ Cannot guarantee to find WCET (WCET) Static program analysis approach

« Applicable for any task Average-case - Upper bound of WCET

+ Cannot handle any task

execution i
A (conservative)

|

lower | Nt upper

timing SNG ™ . timin

bound BCET WCET boun?i
| uncertainty | possible execution times | uncertainty execution time
’ timing predictability

Challenges f

+ To make it safe: upper_bound 2 WCET

WCET overview + To make it tight: minimize (upper_bound — WCET)
(Wilhelm et al., 2008) + Scalability: to handle large and complex programs
a
Cyber-Physical r Precision Timed Design

Systems Infrastructure Challenges

13

What is our goal?

broman@eecs.berkeley.edu

“Everything should be made as simple as possible,

but not simpler* _ o
attributed to Albert Einstein

Execution time should be as short as possible,
but not shorter

Objective:
Instead, minimize Minimize for area, memory,
the slack energy, and execution time
No point in making the for non real-time tasks.
execution time shorter, as
long as the deadline is

Challenge:
met. . Still guarantee to meet
Deadline

all timing constraints.

[
>

a
Cyber-Physical ﬂ Precision Timed Design
Systems Infrastructure Challenges

14

PRET Infrastructure Vision

broman@eecs.berkeley.edu

. Simulink/ Modelica Ptolemy il Modelyze
Modeling Stateflow (Modelica y (Broman and
Languages (Mathworks) Associations) ~ (Ekeret al,, 2003) “sjei, 2012)

Real-time Concurrent C
Programming (Gehani and Ramamritham, 1991)

Languages . .
guag Real-Time Euclid
(Klingerman & Stoyenko, 1986)

Assembly The assembly languages for todays
Languages processors lack the notion of time

B II.I‘aH"F“I T T
Cyber-Physical % Precision Timed Design
Systems Infrastructure Challenges

15

Instruction set architecture (ISA)

broman@eecs.berkeley.edu

The good news The bad news...

Fortunately, electronics technology The chip architectures introduces
delivers highly reliable and precise highly non-deterministic behavior
timing (e.g., using caches, pipelines etc.).

Rethink the ISA
Timing has to be a correctness property
not only a performance (quality) property

Photo by Andrew Dunn, 2005

PRET Machine

* Repeatable and predictable execution time (instructions)

* Repeatable memory access time

* Timing instructions for handling missed deadline detection

a a a
Cyber-Physical ﬂ Precision Timed Design
Systems Infrastructure Challenges

16

Precision Timed Machine

broman@eecs.berkeley.edu

PTARM (ICCD’12)

* Replacing caches with scratchpads

+ Use a thread- interleaved pipeline (4 threads)

* Timing instructions (delay until, exception-
on-expire)

» Soft core on a Xilinx Virtex 5 FPGA

FlexPRET (work-in-progress)

* Dynamically change no of active threads (1-8)
* RISC-V ISA (Waterman, Lee, Patterson, Asanovi, 2011)

Java Optimized Processor (JOP) ARPRET Patmos XMOS
(Schoeberl, 2008) (Andalam et al., 2009) (Shoeberl etal) (May 2009)
ar a a
Cyber-Physical r Precision Timed Design
Systems Infrastructure Challenges

17

PRET Infrastructure Vision

broman@eecs.berkeley.edu

. Simulink/ Modelica Ptolemy II Giotto and Modelyze
Modeling Stateflow (Modelica (Eker et al,, 2003) E machine (Broman and
Languages (Mathworks) Associations) v (Henzinger et al, 2003) Siek, 2012)

\\‘ \\ " ’, "
o~ -
\\\ \\ I /’ ’a”
. . - 2N S * / -~
Programming C with asm inline \~A“ K 4
Languages macros

\

Difficult to compute WCET

Assembly (e.g., determine loop —
Languages bounds and infeasible
paths)

a a a
Cyber-Physical ﬂ Precision Timed Design
Systems Infrastructure Challenges

18

PRET Infrastructure Vision

broman@eecs.berkeley.edu

_ Simulink/ Modelica Ptolemyll =~ Giottoand Modelyze
Modeling Stateflow (Modelica . = ' 5003 E machine (Broman and
Languages (Mathworks) . Associations) (Ekere a"’) (Henzinger et al, 2003) Siek, 2012)

Ss. AN l' S 2= 7
N\\ pJ I /’ a”’ ',
S ®, * 4 -~ /’
Programming C with asm inline \~A“ K yad R4
Languages macros /’
’
’
\ L’
\ 4

- Expose timing constructs

- Abstracting away memory hierarchy

(scratchpad, DRAM etc.) _Our current)Nork-in-progress
is an extension to LLVM

Assembly
Languages
a
Cyber-Physical T Precision Timed Design

Systems Infrastructure Challenges

19

Intermediate Language (ptLLVM) example

broman@eecs.berkeley.edu

Get time (nanoseconds)
since boot time. Sensing, computation,

\ and actuation
/

1 %tl =\gt i64 /
Meet the final deadline 2 mt i64 10000
(!VH:FD)' Specify upper _— 3 ; ...computation...
timing bound \ 4 $t2 = add i64 %t1, 5000
(constraint) of 10pus. 5 du i64 St2
\‘6 fd \

N

Upper bound, MTFD, static analysis Delay Until (DU)
Lower bound, DU, enforced at runtime Specifies lower bound
of 5us.
a
Cyber-Physical ‘r Precision Timed Design
Systems Infrastructure Challenges

20

PRET Infrastructure Vision

broman@eecs.berkeley.edu

_ Simulink/ Modelica Ptolemyll =~ Giottoand Modelyze
Modeling Stateflow (Modelica . = ' 5003 E machine (Broman and
Languages (Mathworks) . Associations) (Ekere a'") (Henzinger et al, 2003) Siek, 2012)

Ssa AN l' S 2= 7
N\\ pJ I /’ a”’ ',
S N * s - /’
Programming C with asm inline \~A“ K yad R4
Languages macros /’
’
’
\ L’
\ 4

- Expose timing constructs

- Abstracting away memory hierarchy

(scratchpad, DRAM etc.) Precision Timed
) Compilation

Assembly
ISA
a
Cyber-Physical r Precision Timed Design
Systems Infrastructure Challenges

Precision Timed Compiler 21

(work-in-progress)

broman@eecs.berkeley.edu

Timing-aware compilation that includes
/ WCET analysis. Bare metal, not executed
on top of a RTOS.

ptc

(Precision Timed “~~ A back-end compiler separated from the
Compiler) LLVM code base. Written in OCaml.

\ WCET analysis and backend compiler
phases are seen as combined problems.

Aim of being modular and easy to extend.
A research platform with clearly separated libraries.

Currently targeting the new FlexPRET
processor using the RISC-V ISA.

a
Cyber-Physical ﬂ Precision Timed Design
Systems Infrastructure Challenges

22

broman@eecs.berkeley.edu

Part Il
Design Challenges

v

a
Cyber-Physical Precision Timed i Design
Systems Infrastructure Challenges

23

Design Challenges

broman@eecs.berkeley.edu

Precision Timed Precision Timed Precision Timed
Languages Hardware Compilers

\ What is the minimal set of timing instructions for
a PRET intermediate language?

How should concurrency be expressed? How
can communication with precise timing be part
of the languages?

How can we incorporate modeling of distributed systems
How do we include clock synchronization in the infrastructure
(e.g., IEEE 1588)

a
Cyber-Physical Precision Timed i Design
Systems Infrastructure Challenges

24

Design Challenges

broman@eecs.berkeley.edu

Precision Timed Precision Timed Precision Timed
Languages Hardware Compilers

How should How should pipelines be How can Dynamic
memory hierarchies handled? Voltage & Frequency
be handled? Thread interleaved pipelines Scaling (DVFS) be
Two extremes: guarantees non-interference combined with WCET
(1) caches and at the expense of latency. analysis?
(2) programmable Can various threads have
DMA transfers. different performance and

Golden middle way? ,redictability guarantees?

a
Cyber-Physical Precision Timed i Design
Systems Infrastructure Challenges

25

Design Challenges

broman@eecs.berkeley.edu

Precision Timed Precision Timed Precision Timed
Languages Hardware Compilers

How computer architecture-aware must
a PRET compiler be? What, besides the
ISA, should be the abstraction?

How can scratchpad memory allocation
be combined with WCET analysis?

How can back-end compiler phases (instruction selection,
register allocation, etc.) be optimized for worst-case instead
of average-case? Can WCET analysis and back-end
optimization be combined?

a
Cyber-Physical Precision Timed i Design
Systems Infrastructure

Challenges

Conclusions

Main takeaway points

For CPS applications, time is a correctness
factor — not just a performance (quality) factor

A PRET intermediate language language
include timing semantics and abstracts away

platform details.

PRET Hardware should give predictable timing
behavior and provide hardware support for
programming with real-time.

A PRET compiler should guarantee that all
timing constraints are fulfilled when executed on
a specific platform.

For more information see: i]
http://chess.eecs.berkeley.edu/pret/ Thank you for listening!

