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Cyber-Physical Systems (CPS)
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Modeling, Simulating, and Compiling
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Cyber-Physical Co-Design Problem
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Rapid development of CPS with high confidence of
correctness is a co-design problem

The design of The design of
Physical system Cyber system:

(the plant) Computation (embedded)
. | + Networking

influence
each other
|
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Cyber/Physical Co-design
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Equation-based mode
Model fidelity problem

“Ensuring that the model accurately
imitates the real system”

LS
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At

' Challenge #1:
Compile/synthesize the model’s cyber part, such that the simulated

model and the behavior of the real system coincide.

The main challenge is to guarantee correct timing behavior.
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Programming Model and Time
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Timing is not part of the software semantics

Correct execution of programs (e.g., in C, C++, C#, Java, Scala,
Haskell, OCaml) has nothing to do with how long time things
takes to execute.

Traditional Approach

Programming

Model

Timing Dependent on the

Hardware Platform
Our Objective

Make time an abstraction within the Timing is independent of the hardware

programming model platform (within certain constraints)
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What is PRET?
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PRET = PREcision-Timed

Stephen Edwards and Edward A. Lee, “The Case for the Precision Timed
(PRET) Machine”, DAC, 2007

PRET Infrastructure

« PRET Language (Language with timing semantics) _

* PRET Compiler (Timing aware compilation)

* PRET Hardware (Computer Architecture)
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Detecting missed deadlines
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Hard task Firm task Soft task
Missed Catastrophic Result is useless, but Result has still
deadline  consequence causes no damage some utility

\

Predictable timing

= Guarantee Early miss Immediate miss Late miss
correctness detection detection detection
(WCET) — Repeatable timing
Processor Task = Same platform: Testability
frequency R = Changing platform: Portability

Time
(measured in e.g., ns)

Precision of timing Deadline
= Level of nano seconds
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Worst-Case Execution Time (WCET)
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Worst-case
Measurement-based approach execution time
+ Cannot guarantee to find WCET (WCET) Static program analysis approach

« Applicable for any task Average-case - Upper bound of WCET

+ Cannot handle any task

execution i
A (conservative)

|

lower | Nt upper

timing SNG ™ . timin

bound BCET WCET boun?i
| uncertainty | possible execution times | uncertainty execution time
’ timing predictability

Challenges f

+ To make it safe: upper_bound 2 WCET

WCET overview + To make it tight: minimize (upper_bound — WCET)
(Wilhelm et al., 2008) + Scalability: to handle large and complex programs
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What is our goal?
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“Everything should be made as simple as possible,

but not simpler* _ o
attributed to Albert Einstein

Execution time should be as short as possible,
but not shorter

Objective:
Instead, minimize Minimize for area, memory,
the slack energy, and execution time
No point in making the for non real-time tasks.
execution time shorter, as
long as the deadline is

Challenge:
met. . Still guarantee to meet
Deadline

all timing constraints.
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PRET Infrastructure Vision
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. Simulink/  Modelica Ptolemy il Modelyze
Modeling Stateflow (Modelica y (Broman and
Languages (Mathworks)  Associations) ~ (Ekeret al,, 2003) “sjei, 2012)

Real-time Concurrent C
Programming (Gehani and Ramamritham, 1991)

Languages . .
guag Real-Time Euclid
(Klingerman & Stoyenko, 1986)

Assembly The assembly languages for todays
Languages processors lack the notion of time

B II.I‘aH"F“I T T
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Instruction set architecture (ISA)
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The good news The bad news...

Fortunately, electronics technology The chip architectures introduces
delivers highly reliable and precise highly non-deterministic behavior
timing (e.g., using caches, pipelines etc.).

Rethink the ISA
Timing has to be a correctness property
not only a performance (quality) property

Photo by Andrew Dunn, 2005

PRET Machine

* Repeatable and predictable execution time (instructions)

* Repeatable memory access time

* Timing instructions for handling missed deadline detection

a a a
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Precision Timed Machine
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PTARM (ICCD’12)

* Replacing caches with scratchpads

+ Use a thread- interleaved pipeline (4 threads)

* Timing instructions (delay until, exception-
on-expire)

» Soft core on a Xilinx Virtex 5 FPGA

FlexPRET (work-in-progress)

* Dynamically change no of active threads (1-8)
* RISC-V ISA (Waterman, Lee, Patterson, Asanovi, 2011)

Java Optimized Processor (JOP) ARPRET Patmos XMOS
(Schoeberl, 2008) (Andalam et al., 2009)  (Shoeberl etal)  (May 2009)
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PRET Infrastructure Vision
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. Simulink/  Modelica  Ptolemy II Giotto and Modelyze
Modeling Stateflow (Modelica (Eker et al,, 2003) E machine (Broman and
Languages (Mathworks)  Associations) v (Henzinger et al, 2003)  Siek, 2012)
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Difficult to compute WCET

Assembly (e.g., determine loop —
Languages bounds and infeasible
paths)
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PRET Infrastructure Vision
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_ Simulink/  Modelica  Ptolemyll =~ Giottoand  Modelyze
Modeling Stateflow (Modelica . = ' 5003 E machine (Broman and
Languages (Mathworks) . Associations) (Ekere a"’ ) (Henzinger et al, 2003)  Siek, 2012)
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- Expose timing constructs

- Abstracting away memory hierarchy

(scratchpad, DRAM etc.) _Our current )Nork-in-progress
is an extension to LLVM

Assembly
Languages
a
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Intermediate Language (ptLLVM) example
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Get time (nanoseconds)
since boot time. Sensing, computation,

\ and actuation
/

1 %tl =\gt i64 /
Meet the final deadline 2 mt i64 10000
(!VH:FD)' Specify upper _— 3 ; ...computation...
timing bound \ 4 $t2 = add i64 %t1, 5000
(constraint) of 10pus. 5 du i64 St2
\‘6 fd \

N

Upper bound, MTFD, static analysis Delay Until (DU)
Lower bound, DU, enforced at runtime Specifies lower bound
of 5us.
a
Cyber-Physical ‘r Precision Timed Design
Systems Infrastructure Challenges

20

PRET Infrastructure Vision
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_ Simulink/  Modelica  Ptolemyll =~ Giottoand  Modelyze
Modeling Stateflow (Modelica . = ' 5003 E machine (Broman and
Languages (Mathworks) . Associations) (Ekere a'" ) (Henzinger et al, 2003)  Siek, 2012)
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- Expose timing constructs

- Abstracting away memory hierarchy

(scratchpad, DRAM etc.) Precision Timed
) Compilation

Assembly
ISA
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(work-in-progress)
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Timing-aware compilation that includes
/ WCET analysis. Bare metal, not executed
on top of a RTOS.

ptc

(Precision Timed “~~ A back-end compiler separated from the
Compiler) LLVM code base. Written in OCaml.

\ WCET analysis and backend compiler
phases are seen as combined problems.

Aim of being modular and easy to extend.
A research platform with clearly separated libraries.

Currently targeting the new FlexPRET
processor using the RISC-V ISA.
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Design Challenges
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Precision Timed Precision Timed Precision Timed
Languages Hardware Compilers

\ What is the minimal set of timing instructions for
a PRET intermediate language?

How should concurrency be expressed? How
can communication with precise timing be part
of the languages?

How can we incorporate modeling of distributed systems
How do we include clock synchronization in the infrastructure
(e.g., IEEE 1588)
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Design Challenges
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Precision Timed Precision Timed Precision Timed
Languages Hardware Compilers

How should How should pipelines be How can Dynamic
memory hierarchies  handled? Voltage & Frequency
be handled? Thread interleaved pipelines Scaling (DVFS) be
Two extremes: guarantees non-interference combined with WCET
(1) caches and at the expense of latency. analysis?
(2) programmable Can various threads have
DMA transfers. different performance and

Golden middle way?  ,redictability guarantees?

a
Cyber-Physical Precision Timed i Design
Systems Infrastructure Challenges



25

Design Challenges
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Precision Timed Precision Timed Precision Timed
Languages Hardware Compilers

How computer architecture-aware must
a PRET compiler be? What, besides the
ISA, should be the abstraction?

How can scratchpad memory allocation
be combined with WCET analysis?

How can back-end compiler phases (instruction selection,
register allocation, etc.) be optimized for worst-case instead
of average-case? Can WCET analysis and back-end
optimization be combined?

a
Cyber-Physical Precision Timed i Design
Systems Infrastructure

Challenges

Conclusions

Main takeaway points

For CPS applications, time is a correctness
factor — not just a performance (quality) factor

A PRET intermediate language language
include timing semantics and abstracts away

platform details.

PRET Hardware should give predictable timing
behavior and provide hardware support for
programming with real-time.

A PRET compiler should guarantee that all
timing constraints are fulfilled when executed on
a specific platform.

For more information see: i ]
http://chess.eecs.berkeley.edu/pret/ Thank you for listening!




