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Physical system  
(the plant) 

Cyber system:  
Computation (embedded)  

+ Networking 
 

Rapid development of CPS with high confidence of 
correctness is a co-design problem 

The design of The design of 

influence  
each other 
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Modeling 
Model fidelity problem 

 
“Ensuring that the model accurately  

imitates the real system” 

Physical 
prototyping 

Compiling/ 
synthesizing 

Challenge #1:  
Compile/synthesize the model’s cyber part, such that the simulated 
model and the behavior of the real system coincide.  
 The main challenge is to guarantee correct timing behavior.  
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Programming Model and Time 

Timing is not part of the software semantics 
 Correct execution of programs (e.g., in C, C++, C#, Java, Scala, 
Haskell, OCaml) has nothing to do with how long time things 
takes to execute. 

 

Programming 
Model 

Timing Dependent on the 
Hardware Platform 

 

Make time an abstraction within the 
programming model 

 

Traditional Approach 

 

Programming 
Model 

Our Objective 

 

Timing is independent of the hardware 
platform (within certain constraints) 
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What is PRET? 

PRET = PREcision-Timed 
 

Stephen Edwards and Edward A. Lee, “The Case for the Precision Timed 
(PRET) Machine”,  DAC, 2007 

PRET Infrastructure 

•  PRET Hardware (Computer Architecture) 

•  PRET Compiler (Timing aware compilation) 

•  PRET Language (Language with timing semantics) 
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Detecting missed deadlines 

Task 
(clock cycles) 

Time 
(measured in e.g., ns) 

  
 

Deadline 

 

Hard task Firm task Soft task 
Missed 
deadline 

Catastrophic 
consequence  

Result is useless, but 
causes no damage 

Result has still 
some utility 

Processor  
frequency 

 

Late miss 
detection 

Immediate miss 
detection 

Early miss 
detection 

Precision of timing 
! Level of nano seconds 

Repeatable timing 
! Same platform: Testability 
! Changing platform: Portability 

Predictable timing 
! Guarantee 

correctness 
(WCET) 
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Worst-Case Execution Time (WCET) 
Worst-case  
execution time  
(WCET) Static program analysis approach 

•  Upper bound of WCET 
•  Cannot handle any task 

(conservative) 
 

Challenges 
•  To make it safe:    upper_bound ≥ WCET 
•  To make it tight:   minimize (upper_bound – WCET) 
•  Scalability:            to handle large and complex programs   

Average-case  
execution  
time (ACET) 

WCET overview  
(Wilhelm et al., 2008) 

Measurement-based approach 
•  Cannot guarantee to find WCET 
•  Applicable for any task 
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What is our goal? 

“Everything should be made as simple as possible, 
but not simpler“ 

Execution time should be as short as possible, 
but not shorter 

attributed to Albert Einstein 

Task 

Deadline 
 

Slack 

 

No point in making the 
execution time shorter, as 
long as the deadline is 
met. 

Instead, minimize 
the slack 

Objective: 
Minimize for area, memory, 
energy, and execution time 
for non real-time tasks. 

Challenge: 
Still guarantee to meet 
all timing constraints. 
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PRET Infrastructure Vision 

Modeling 
Languages 

Programming 
Languages 

Assembly 
Languages 

Modelyze 
(Broman and  
Siek, 2012) 

Ptolemy II 
(Eker et al., 2003) 

Simulink/ 
Stateflow 
(Mathworks) 

Modelica 
(Modelica  

Associations) 

Real-Time Euclid   
(Klingerman & Stoyenko, 1986) 

Real-time Concurrent C   
(Gehani and Ramamritham, 1991) 

The assembly languages for todays 
processors lack the notion of time 
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Instruction set architecture (ISA) 

Rethink the ISA 
Timing has to be a correctness property  
not only a performance (quality) property 

PRET Machine 

•  Timing instructions for handling missed deadline detection 
•  Repeatable memory access time 
•  Repeatable and predictable execution time (instructions) 

Photo by Andrew Dunn, 2005 
 

The good news 
Fortunately, electronics technology  
delivers highly reliable and precise 
timing 

The bad news… 
The chip architectures introduces 
highly non-deterministic behavior 
(e.g., using caches, pipelines etc.). 
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Precision Timed Machine 

Java Optimized Processor (JOP)   
(Schoeberl, 2008) 

ARPRET 
(Andalam et al., 2009) 

PTARM (ICCD’12) 
•  Replacing caches with scratchpads 
•  Use a thread- interleaved pipeline (4 threads) 
•  Timing instructions (delay until, exception-

on-expire) 
•  Soft core on a Xilinx Virtex 5 FPGA 
 

  

Patmos 
(Shoeberl et al) 

FlexPRET (work-in-progress) 
•  Dynamically change no of active threads (1-8)  
•  RISC-V ISA (Waterman, Lee, Patterson, Asanovi, 2011) 

  

XMOS 
(May 2009) 
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PRET Infrastructure Vision 
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Associations) 

PRET  
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C 

C  with asm inline  
macros 

Giotto and  
E machine 

(Henzinger et al, 2003) 

Difficult to compute WCET 
(e.g., determine loop 
bounds and infeasible 
paths) 
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Modeling 
Languages 

Programming 
Languages 

Assembly 
Languages 

Modelyze 
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Siek, 2012) 

Ptolemy II 
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Simulink/ 
Stateflow 
(Mathworks) 

Modelica 
(Modelica  

Associations) 

PRET  
ISA 

C 

C  with asm inline  
macros 

Giotto and  
E machine 

(Henzinger et al, 2003) 

PRETIL 
- Abstracting away memory hierarchy     
  (scratchpad, DRAM etc.) 

- Expose timing constructs 

Our current work-in-progress 
is an extension to LLVM 
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Intermediate Language (ptLLVM) example 

TaskTask

Catastrophic 
consequences

Hard Tasks

Time

Firm Tasks Soft Tasks

Missed 
Deadline

Result has still
some utility

Result is useless, 
but causes no damage 

Early 
miss detection

(static)

Immediate 
miss detection

(dynamic)

Late 
miss detection

(dynamic)

DeadlineStart time

Fig. 2. Relationship between types of tasks and deadline detection.

of the worst-case execution time (WCET) [35] must be less
or equal to the relative deadline. Languages that are part
of a precision timed infrastructure should—with a certain
precision—include semantics for handling all these kinds of
detection mechanisms.

C. Towards a PRET Intermediate Language

Our current work-in-progress is focusing on extending the
low level virtual machine (LLVM) [22] assembly language
with timing semantics. We call this precision timed extension
ptLLVM.

Timing constraints for hard real-time tasks, which require
early miss detection, can be expressed using a software con-
struct called meet the final deadline (MTFD), originally pro-
posed as a hardware instruction [7]. A code block is assigned
a deadline and the program will refuse to compile if it cannot
meet the deadline. As input the compiler needs, besides the
timed program, a specification of the target architecture. If the
target microarchitecture is a PRET machine (see bottom part
of Figure 1), verification of deadlines is significantly simplified
(see Section IV) compared to a standard general purpose
processor. A PRET intermediate language is not, however,
in principle required to be compiled to a PRET machines;
compilation could also be done for a standard embedded
platform with timer support—although the precision of time
may not be the same.

The following simple ptLLVM code shows how a program
can be given an upper and a lower time bound.
1 %t1 = gt i64 ; Get current time in ns

2 mt i64 10000 ; Takes at most 10us

3 ; ...computation...

4 %t2 = add i64 %t1, 5000
5 du i64 %t2 ; Takes at least 5us

6 fd

The example illustrates four new timing instructions3, shown
in bold. On line 1, instruction gt (get time) returns a 64-
bit integer value (i64) representing number of nanoseconds
elapsed since system boot time. The returned value is stored
in the local variable %t1. The MTFD construct is divided into
two separate instructions; mt (line 2) specifying the beginning

3The timing instructions are here shown, for brevity, as native LLVM
instructions, but are in our current work-in-progress defined as intrinsic
functions.

of the timing constrained block and fd (line 6) specifying the
end. The MTFD block states that all code between mt and
fd must execute within 10µs. As a consequence, this MTFD
block gives a static upper bound of the execution time. The
software toolchain must check such timing instructions and
provide guarantees, which is further discussed in Section IV.
Variable %t2 is assigned an incremented value, which is used
by the du (delay until) instruction (line 6) to express an
lower bound of 5 µs. Consequently, the execution time of
the computation task (line 3) is bound to be between 5 µs
and 10 µs: an explicit time constraint.

Although not shown in the above example, one more
instruction is needed to cover all different variants of deadline
miss detection. To perform immediate miss detection, we
introduce an instruction called ee (exception on expire). The
purpose of this instruction to specify a timed exception that is
raised exactly when a specified deadline is missed.

D. PRET Language Design Challenges
A number of questions arise while designing a language
hierarchy with a ubiquitous notion of time:

• What is the minimal set of timing constructs of an
intermediate language for expressing real-time semantics
of arbitrary modeling languages? In our current work, this
set consists of the “get time,” “delay until,” “exception
on expire,” and “meet the final deadline” instructions.
We believe this is enough in a single threaded setting;
comprehensive studies showing how to compile several
modeling languages could help to confirm this.

• How should the precision of time be expressed? Most
modeling languages simply assume perfect clocks and
timing. However, it matters whether the implementation
platform can deliver millisecond- or nanosecond-level
precision. The behavior of the realized system may sub-
stantially differ depending on the precision.

• How should concurrency be expressed in a timed inter-
mediate languages? In several formalisms and languages,
such as Kahn process networks [19] or synchronous
languages [3], concurrency is an inherent property. The
target platform may be parallel, having multiple cores,
hardware threads, or both. Yet most implementation lan-
guages (e.g., C) and intermediate assembly representa-
tions (e.g., LLVM) do not provide explicit concurrency
constructs. The challenge is to provide both constructs
for expressing concurrency and to provide predictable
communication mechanisms.

• What is the role of a real-time operating system (RTOS)
for a precision timed infrastructure? Should scheduling of
tasks be part of a RTOS (designed for PRET languages)
or should the system be bare metal and scheduling be
part of the compilation process?

• How can timed intermediate languages be compiled in a
distributed setting? If the modeling language is based on a
distributed model of computation, such as PTIDES [36],
we would like the infrastructure to partition the imple-
mentation into distributed pieces.

Get time (nanoseconds) 
since boot time. 

Meet the final deadline 
(MTFD). Specify upper 
timing bound 
(constraint) of 10µs. 

Sensing, computation, 
and actuation 

Delay Until (DU)  
Specifies lower bound 
of 5µs. 

Upper bound, MTFD, static analysis 
Lower bound, DU, enforced at runtime 
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Precision Timed Compiler  
(work-in-progress) 

A back-end compiler separated from the 
LLVM code base. Written in OCaml. 

Timing-aware compilation that includes 
WCET analysis. Bare metal, not executed 
on top of a RTOS. 
 

WCET analysis and backend compiler 
phases are seen as combined problems.  

Aim of being modular and easy to extend.  
A research platform with clearly separated libraries. 

Currently targeting the new FlexPRET 
processor using the RISC-V ISA. 

ptc  
(Precision Timed  

Compiler) 
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Design Challenges 

What is the minimal set of timing instructions for 
a PRET intermediate language? 

Precision Timed 
Languages 

Precision Timed 
Hardware 

Precision Timed 
Compilers 

How should concurrency be expressed? How 
can communication with precise timing be part 
of the languages? 

How can we incorporate modeling of distributed systems 
How do we include clock synchronization in the infrastructure 
(e.g., IEEE 1588)  
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Design Challenges 

How should  
memory hierarchies  
be handled?  
Two extremes:  
(1) caches and  
(2) programmable 
DMA transfers.  
Golden middle way? 

Precision Timed 
Languages 

Precision Timed 
Hardware 

Precision Timed 
Compilers 

How should pipelines be 
handled?  
Thread interleaved pipelines 
guarantees non-interference 
at the expense of latency.  
Can various threads have 
different performance and 
predictability guarantees? 

How can Dynamic 
Voltage & Frequency 
Scaling (DVFS) be 
combined with WCET 
analysis? 
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Design Challenges 

How computer architecture-aware must 
a PRET compiler be? What, besides the 
ISA, should  be the abstraction? 

Precision Timed 
Languages 

Precision Timed 
Hardware 

Precision Timed 
Compilers 

How can scratchpad memory allocation 
be combined with WCET analysis?  

How can back-end compiler phases (instruction selection, 
register allocation, etc.) be optimized for worst-case instead 
of average-case? Can WCET analysis and back-end 
optimization be combined? 

Conclusions 

Main takeaway points 
 For CPS applications, time is a correctness 

factor – not just a performance (quality) factor 

A PRET intermediate language language 
include timing semantics and abstracts away 
platform details. 

A PRET compiler should guarantee that all 
timing constraints are fulfilled when executed on 
a specific platform. 

Thank you for listening! 

PRET Language 

PRET Hardware should give predictable timing 
behavior and provide hardware support for 
programming with real-time. 

For more information see: 
http://chess.eecs.berkeley.edu/pret/ 


