
Precision Timed Infrastructure:
Languages, Compilers, and Hardware with

Ubiquitous Notion of Time

David Broman
broman@eecs.berkeley.edu

EECS Department

University of California, Berkeley, USA

 and

Linköping University, Sweden

June 28, 2013

PRET Infrastructure at Berkeley
Edward A. Lee
Aviral Shrivastava
Chris Shaver
Michael Zimmer

David Broman
Jian Cai
Hokeun Kim
Yooseong Kim

2

Part I !
Cyber-Physical  
Systems!

Part II!
Precision Timed  
Infrastructure!

broman@eecs.berkeley.edu

Part III!
Design  
Challenges!

Agenda

Part II

 Precision Timed Infrastructure

Part III

Design
Challenges

Part I

Cyber-Physical
Systems

Platform 1

Physical Plant 2

Physical Plant 2

Physical
Interface

Physical Plant 1

Network
Platform 2

Platform 3

Physical
Interface

Sensor

Sensor

Physical
InterfaceActuator

Physical
Interface Actuator

Computation 3

Delay 1Computation 1

Computation 4
Computation 2

Delay 2

3

Part I !
Cyber-Physical  
Systems!

Part II!
Precision Timed  
Infrastructure!

broman@eecs.berkeley.edu

Part III!
Design  
Challenges!

Part I
Cyber-Physical Systems

Platform 1

Physical Plant 2

Physical Plant 2

Physical
Interface

Physical Plant 1

Network
Platform 2

Platform 3

Physical
Interface

Sensor

Sensor

Physical
InterfaceActuator

Physical
Interface Actuator

Computation 3

Delay 1Computation 1

Computation 4
Computation 2

Delay 2

4

Part I !
Cyber-Physical  
Systems!

Part II!
Precision Timed  
Infrastructure!

broman@eecs.berkeley.edu

Part III!
Design  
Challenges!

Cyber-Physical Systems (CPS)

Industrial Robots Power Plants Aircraft

5

Part I !
Cyber-Physical  
Systems!

Part II!
Precision Timed  
Infrastructure!

broman@eecs.berkeley.edu

Part III!
Design  
Challenges!

Modeling, Simulating, and Compiling
Cyber-Physical Systems

Physical system (the plant) Cyber system: Computation (embedded) + Networking

Sensors

Actuators

System

Model

Modeling

Equation-based model

Platform 1

Physical Plant 2

Physical Plant 2

Physical
Interface

Physical Plant 1

Network
Platform 2

Platform 3

Physical
Interface

Sensor

Sensor

Physical
InterfaceActuator

Physical
Interface Actuator

Computation 3

Delay 1Computation 1

Computation 4
Computation 2

Delay 2

Various models of computation (MoC)

Physical system
available?

Hardware-in-the-loop
(HIL) simulation

Simulation with
timing properties

Modeling

6

Part I !
Cyber-Physical  
Systems!

Part II!
Precision Timed  
Infrastructure!

broman@eecs.berkeley.edu

Part III!
Design  
Challenges!

Cyber-Physical Co-Design Problem

Physical system
(the plant)

Cyber system:
Computation (embedded)

+ Networking

Rapid development of CPS with high confidence of
correctness is a co-design problem

The design of The design of

influence
each other

7

Part I !
Cyber-Physical  
Systems!

Part II!
Precision Timed  
Infrastructure!

broman@eecs.berkeley.edu

Part III!
Design  
Challenges!

Cyber/Physical Co-design

Physical system (the plant) Cyber system: Computation (embedded) + Networking

Sensors

Actuators

System

Model

Modeling

Equation-based model

Platform 1

Physical Plant 2

Physical Plant 2

Physical
Interface

Physical Plant 1

Network
Platform 2

Platform 3

Physical
Interface

Sensor

Sensor

Physical
InterfaceActuator

Physical
Interface Actuator

Computation 3

Delay 1Computation 1

Computation 4
Computation 2

Delay 2

Various models of computation (MoC)

Modeling
Model fidelity problem

“Ensuring that the model accurately

imitates the real system”

Physical
prototyping

Compiling/
synthesizing

Challenge #1:
Compile/synthesize the model’s cyber part, such that the simulated
model and the behavior of the real system coincide.
 The main challenge is to guarantee correct timing behavior.

8

Part I !
Cyber-Physical  
Systems!

Part II!
Precision Timed  
Infrastructure!

broman@eecs.berkeley.edu

Part III!
Design  
Challenges!

Part II
Precision Timed Infrastructure

9

Part I !
Cyber-Physical  
Systems!

Part II!
Precision Timed  
Infrastructure!

broman@eecs.berkeley.edu

Part III!
Design  
Challenges!

Programming Model and Time

Timing is not part of the software semantics
 Correct execution of programs (e.g., in C, C++, C#, Java, Scala,
Haskell, OCaml) has nothing to do with how long time things
takes to execute.

Programming
Model

Timing Dependent on the
Hardware Platform

Make time an abstraction within the
programming model

Traditional Approach

Programming
Model

Our Objective

Timing is independent of the hardware
platform (within certain constraints)

10

Part I !
Cyber-Physical  
Systems!

Part II!
Precision Timed  
Infrastructure!

broman@eecs.berkeley.edu

Part III!
Design  
Challenges!

What is PRET?

PRET = PREcision-Timed

Stephen Edwards and Edward A. Lee, “The Case for the Precision Timed
(PRET) Machine”, DAC, 2007

PRET Infrastructure

•  PRET Hardware (Computer Architecture)

•  PRET Compiler (Timing aware compilation)

•  PRET Language (Language with timing semantics)

11

Part I !
Cyber-Physical  
Systems!

Part II!
Precision Timed  
Infrastructure!

broman@eecs.berkeley.edu

Part III!
Design  
Challenges!

Detecting missed deadlines

Task
(clock cycles)

Time
(measured in e.g., ns)

Deadline

Hard task Firm task Soft task
Missed
deadline

Catastrophic
consequence

Result is useless, but
causes no damage

Result has still
some utility

Processor
frequency

Late miss
detection

Immediate miss
detection

Early miss
detection

Precision of timing
! Level of nano seconds

Repeatable timing
! Same platform: Testability
! Changing platform: Portability

Predictable timing
! Guarantee

correctness
(WCET)

12

Part I !
Cyber-Physical  
Systems!

Part II!
Precision Timed  
Infrastructure!

broman@eecs.berkeley.edu

Part III!
Design  
Challenges!

Worst-Case Execution Time (WCET)
Worst-case
execution time
(WCET) Static program analysis approach

•  Upper bound of WCET
•  Cannot handle any task

(conservative)

Challenges
•  To make it safe: upper_bound ≥ WCET
•  To make it tight: minimize (upper_bound – WCET)
•  Scalability: to handle large and complex programs

Average-case
execution
time (ACET)

WCET overview
(Wilhelm et al., 2008)

Measurement-based approach
•  Cannot guarantee to find WCET
•  Applicable for any task

13

Part I !
Cyber-Physical  
Systems!

Part II!
Precision Timed  
Infrastructure!

broman@eecs.berkeley.edu

Part III!
Design  
Challenges!

What is our goal?

“Everything should be made as simple as possible,
but not simpler“

Execution time should be as short as possible,
but not shorter

attributed to Albert Einstein

Task

Deadline

Slack

No point in making the
execution time shorter, as
long as the deadline is
met.

Instead, minimize
the slack

Objective:
Minimize for area, memory,
energy, and execution time
for non real-time tasks.

Challenge:
Still guarantee to meet
all timing constraints.

14

Part I !
Cyber-Physical  
Systems!

Part II!
Precision Timed  
Infrastructure!

broman@eecs.berkeley.edu

Part III!
Design  
Challenges!

PRET Infrastructure Vision

Modeling
Languages

Programming
Languages

Assembly
Languages

Modelyze
(Broman and
Siek, 2012)

Ptolemy II
(Eker et al., 2003)

Simulink/
Stateflow
(Mathworks)

Modelica
(Modelica

Associations)

Real-Time Euclid
(Klingerman & Stoyenko, 1986)

Real-time Concurrent C
(Gehani and Ramamritham, 1991)

The assembly languages for todays
processors lack the notion of time

15

Part I !
Cyber-Physical  
Systems!

Part II!
Precision Timed  
Infrastructure!

broman@eecs.berkeley.edu

Part III!
Design  
Challenges!

Instruction set architecture (ISA)

Rethink the ISA
Timing has to be a correctness property
not only a performance (quality) property

PRET Machine

•  Timing instructions for handling missed deadline detection
•  Repeatable memory access time
•  Repeatable and predictable execution time (instructions)

Photo by Andrew Dunn, 2005

The good news
Fortunately, electronics technology
delivers highly reliable and precise
timing

The bad news…
The chip architectures introduces
highly non-deterministic behavior
(e.g., using caches, pipelines etc.).

16

Part I !
Cyber-Physical  
Systems!

Part II!
Precision Timed  
Infrastructure!

broman@eecs.berkeley.edu

Part III!
Design  
Challenges!

Precision Timed Machine

Java Optimized Processor (JOP)
(Schoeberl, 2008)

ARPRET
(Andalam et al., 2009)

PTARM (ICCD’12)
•  Replacing caches with scratchpads
•  Use a thread- interleaved pipeline (4 threads)
•  Timing instructions (delay until, exception-

on-expire)
•  Soft core on a Xilinx Virtex 5 FPGA

Patmos
(Shoeberl et al)

FlexPRET (work-in-progress)
•  Dynamically change no of active threads (1-8)
•  RISC-V ISA (Waterman, Lee, Patterson, Asanovi, 2011)

XMOS
(May 2009)

17

Part I !
Cyber-Physical  
Systems!

Part II!
Precision Timed  
Infrastructure!

broman@eecs.berkeley.edu

Part III!
Design  
Challenges!

PRET Infrastructure Vision

Modeling
Languages

Programming
Languages

Assembly
Languages

Modelyze
(Broman and
Siek, 2012)

Ptolemy II
(Eker et al., 2003)

Simulink/
Stateflow
(Mathworks)

Modelica
(Modelica

Associations)

PRET
ISA

C

C with asm inline
macros

Giotto and
E machine

(Henzinger et al, 2003)

Difficult to compute WCET
(e.g., determine loop
bounds and infeasible
paths)

18

Part I !
Cyber-Physical  
Systems!

Part II!
Precision Timed  
Infrastructure!

broman@eecs.berkeley.edu

Part III!
Design  
Challenges!

PRET Infrastructure Vision

Modeling
Languages

Programming
Languages

Assembly
Languages

Modelyze
(Broman and
Siek, 2012)

Ptolemy II
(Eker et al., 2003)

Simulink/
Stateflow
(Mathworks)

Modelica
(Modelica

Associations)

PRET
ISA

C

C with asm inline
macros

Giotto and
E machine

(Henzinger et al, 2003)

PRETIL
- Abstracting away memory hierarchy
 (scratchpad, DRAM etc.)

- Expose timing constructs

Our current work-in-progress
is an extension to LLVM

19

Part I !
Cyber-Physical  
Systems!

Part II!
Precision Timed  
Infrastructure!

broman@eecs.berkeley.edu

Part III!
Design  
Challenges!

Intermediate Language (ptLLVM) example

TaskTask

Catastrophic
consequences

Hard Tasks

Time

Firm Tasks Soft Tasks

Missed
Deadline

Result has still
some utility

Result is useless,
but causes no damage

Early
miss detection

(static)

Immediate
miss detection

(dynamic)

Late
miss detection

(dynamic)

DeadlineStart time

Fig. 2. Relationship between types of tasks and deadline detection.

of the worst-case execution time (WCET) [35] must be less
or equal to the relative deadline. Languages that are part
of a precision timed infrastructure should—with a certain
precision—include semantics for handling all these kinds of
detection mechanisms.

C. Towards a PRET Intermediate Language

Our current work-in-progress is focusing on extending the
low level virtual machine (LLVM) [22] assembly language
with timing semantics. We call this precision timed extension
ptLLVM.

Timing constraints for hard real-time tasks, which require
early miss detection, can be expressed using a software con-
struct called meet the final deadline (MTFD), originally pro-
posed as a hardware instruction [7]. A code block is assigned
a deadline and the program will refuse to compile if it cannot
meet the deadline. As input the compiler needs, besides the
timed program, a specification of the target architecture. If the
target microarchitecture is a PRET machine (see bottom part
of Figure 1), verification of deadlines is significantly simplified
(see Section IV) compared to a standard general purpose
processor. A PRET intermediate language is not, however,
in principle required to be compiled to a PRET machines;
compilation could also be done for a standard embedded
platform with timer support—although the precision of time
may not be the same.

The following simple ptLLVM code shows how a program
can be given an upper and a lower time bound.
1 %t1 = gt i64 ; Get current time in ns

2 mt i64 10000 ; Takes at most 10us

3 ; ...computation...

4 %t2 = add i64 %t1, 5000
5 du i64 %t2 ; Takes at least 5us

6 fd

The example illustrates four new timing instructions3, shown
in bold. On line 1, instruction gt (get time) returns a 64-
bit integer value (i64) representing number of nanoseconds
elapsed since system boot time. The returned value is stored
in the local variable %t1. The MTFD construct is divided into
two separate instructions; mt (line 2) specifying the beginning

3The timing instructions are here shown, for brevity, as native LLVM
instructions, but are in our current work-in-progress defined as intrinsic
functions.

of the timing constrained block and fd (line 6) specifying the
end. The MTFD block states that all code between mt and
fd must execute within 10µs. As a consequence, this MTFD
block gives a static upper bound of the execution time. The
software toolchain must check such timing instructions and
provide guarantees, which is further discussed in Section IV.
Variable %t2 is assigned an incremented value, which is used
by the du (delay until) instruction (line 6) to express an
lower bound of 5 µs. Consequently, the execution time of
the computation task (line 3) is bound to be between 5 µs
and 10 µs: an explicit time constraint.

Although not shown in the above example, one more
instruction is needed to cover all different variants of deadline
miss detection. To perform immediate miss detection, we
introduce an instruction called ee (exception on expire). The
purpose of this instruction to specify a timed exception that is
raised exactly when a specified deadline is missed.

D. PRET Language Design Challenges
A number of questions arise while designing a language
hierarchy with a ubiquitous notion of time:

• What is the minimal set of timing constructs of an
intermediate language for expressing real-time semantics
of arbitrary modeling languages? In our current work, this
set consists of the “get time,” “delay until,” “exception
on expire,” and “meet the final deadline” instructions.
We believe this is enough in a single threaded setting;
comprehensive studies showing how to compile several
modeling languages could help to confirm this.

• How should the precision of time be expressed? Most
modeling languages simply assume perfect clocks and
timing. However, it matters whether the implementation
platform can deliver millisecond- or nanosecond-level
precision. The behavior of the realized system may sub-
stantially differ depending on the precision.

• How should concurrency be expressed in a timed inter-
mediate languages? In several formalisms and languages,
such as Kahn process networks [19] or synchronous
languages [3], concurrency is an inherent property. The
target platform may be parallel, having multiple cores,
hardware threads, or both. Yet most implementation lan-
guages (e.g., C) and intermediate assembly representa-
tions (e.g., LLVM) do not provide explicit concurrency
constructs. The challenge is to provide both constructs
for expressing concurrency and to provide predictable
communication mechanisms.

• What is the role of a real-time operating system (RTOS)
for a precision timed infrastructure? Should scheduling of
tasks be part of a RTOS (designed for PRET languages)
or should the system be bare metal and scheduling be
part of the compilation process?

• How can timed intermediate languages be compiled in a
distributed setting? If the modeling language is based on a
distributed model of computation, such as PTIDES [36],
we would like the infrastructure to partition the imple-
mentation into distributed pieces.

Get time (nanoseconds)
since boot time.

Meet the final deadline
(MTFD). Specify upper
timing bound
(constraint) of 10µs.

Sensing, computation,
and actuation

Delay Until (DU)
Specifies lower bound
of 5µs.

Upper bound, MTFD, static analysis
Lower bound, DU, enforced at runtime

20

Part I !
Cyber-Physical  
Systems!

Part II!
Precision Timed  
Infrastructure!

broman@eecs.berkeley.edu

Part III!
Design  
Challenges!

PRET Infrastructure Vision

Modeling
Languages

Programming
Languages

Assembly
Languages

Modelyze
(Broman and
Siek, 2012)

Ptolemy II
(Eker et al., 2003)

Simulink/
Stateflow
(Mathworks)

Modelica
(Modelica

Associations)

PRET
ISA

C

C with asm inline
macros

Giotto and
E machine

(Henzinger et al, 2003)

PRETIL
- Abstracting away memory hierarchy
 (scratchpad, DRAM etc.)

- Expose timing constructs

Other (non PRET)
ISA

Precision Timed
Compilation

21

Part I !
Cyber-Physical  
Systems!

Part II!
Precision Timed  
Infrastructure!

broman@eecs.berkeley.edu

Part III!
Design  
Challenges!

Precision Timed Compiler
(work-in-progress)

A back-end compiler separated from the
LLVM code base. Written in OCaml.

Timing-aware compilation that includes
WCET analysis. Bare metal, not executed
on top of a RTOS.

WCET analysis and backend compiler
phases are seen as combined problems.

Aim of being modular and easy to extend.
A research platform with clearly separated libraries.

Currently targeting the new FlexPRET
processor using the RISC-V ISA.

ptc
(Precision Timed

Compiler)

22

Part I !
Cyber-Physical  
Systems!

Part II!
Precision Timed  
Infrastructure!

broman@eecs.berkeley.edu

Part III!
Design  
Challenges!

Part III
Design Challenges

23

Part I !
Cyber-Physical  
Systems!

Part II!
Precision Timed  
Infrastructure!

broman@eecs.berkeley.edu

Part III!
Design  
Challenges!

Design Challenges

What is the minimal set of timing instructions for
a PRET intermediate language?

Precision Timed
Languages

Precision Timed
Hardware

Precision Timed
Compilers

How should concurrency be expressed? How
can communication with precise timing be part
of the languages?

How can we incorporate modeling of distributed systems
How do we include clock synchronization in the infrastructure
(e.g., IEEE 1588)

24

Part I !
Cyber-Physical  
Systems!

Part II!
Precision Timed  
Infrastructure!

broman@eecs.berkeley.edu

Part III!
Design  
Challenges!

Design Challenges

How should
memory hierarchies
be handled?
Two extremes:
(1) caches and
(2) programmable
DMA transfers.
Golden middle way?

Precision Timed
Languages

Precision Timed
Hardware

Precision Timed
Compilers

How should pipelines be
handled?
Thread interleaved pipelines
guarantees non-interference
at the expense of latency.
Can various threads have
different performance and
predictability guarantees?

How can Dynamic
Voltage & Frequency
Scaling (DVFS) be
combined with WCET
analysis?

25

Part I !
Cyber-Physical  
Systems!

Part II!
Precision Timed  
Infrastructure!

broman@eecs.berkeley.edu

Part III!
Design  
Challenges!

Design Challenges

How computer architecture-aware must
a PRET compiler be? What, besides the
ISA, should be the abstraction?

Precision Timed
Languages

Precision Timed
Hardware

Precision Timed
Compilers

How can scratchpad memory allocation
be combined with WCET analysis?

How can back-end compiler phases (instruction selection,
register allocation, etc.) be optimized for worst-case instead
of average-case? Can WCET analysis and back-end
optimization be combined?

Conclusions

Main takeaway points
 For CPS applications, time is a correctness

factor – not just a performance (quality) factor

A PRET intermediate language language
include timing semantics and abstracts away
platform details.

A PRET compiler should guarantee that all
timing constraints are fulfilled when executed on
a specific platform.

Thank you for listening!

PRET Language

PRET Hardware should give predictable timing
behavior and provide hardware support for
programming with real-time.

For more information see:
http://chess.eecs.berkeley.edu/pret/

